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ON THE FRACTIONAL STOCHASTIC FILTERING

TRAN HUNG THAO, PAIROTE SATTAYATHAM, AND TIDARUT PLIENPANICH

Abstract. The aim of this note is to introduce an approximate approach

to fractional filtering problems, where either the signal process or obser-

vation process, or both are perturbed by a fractional noise. Approximate

filtering equations are established and the true filtering is considered as

the limit case of approximate filterings.

1. Introduction

It is known that fractional Brownian motion (fBm) was introduced firstly by

B. Mandelbrot and Van Nees. This is a centered Gaussian process BH = {BH
t , t ≥ 0}

with covariance

E(BH
s B

H
t ) =

1
2
(
s2H + t2H − |t− s|2H

)
(1.1)

where H is called the Hurst parameter, 0 < H < 1

In the case where H = 1
2 , E(B1/2

s B
1/2
t ) = 1

2 (s+t−|t−s|) we have an ordinary

standard Brownian motion. The fractional Brownian motion is in general neither a

martingale nor a Markov process. In contrary, it exhibits a long-range dependence.

Some approaches to fractional stochastic calculus have been introduced by L. Coutin,

L. Decreusefond, W. Dai, C. Heyde, Lin, A.S. Üstünel, D. Feyel, de La Pradelle, T.

Duncan, B. Duncan (refer for example to [1, 2, 3])

A fractional Brownian motion has been considered also by C. Ciesielski and

al. as a special sequence of random functions in some Orlicz-Besov space [4].
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Stochastic filtering problems in fractional stochastic framework were studied

by some authors. The main obstacle in the study of these problems is the fact that the

signal process or the observation process is not driven by a martingale and powerful

tools of martingale theory can not be applied as in traditional stochastic filtering

theory. Some attempts have been made by L. Decreusefond, A.A. Üstünel to overcome

this difficulty by using the Malliavin Calculus [3].

In a fractional filtering problem, the state (or signal) process is some sto-

chastic process Xt, while the observation Yt is given by a fractional process of the

form:

Yt =
∫ t

0

hsds+BH
t (1.2)

where BH
t is a fractional Brownian motion with a Hurst parameter H such that

0 < H < 1
2 and ht = h(Xt) is some process of finite energy, i.e.

E

∫ ∞

0

h2
sds <∞.

As shown in [6], the fBm BH = (BH
t , t ≥ 0) has the following representation

BH
t =

1
Γ(1− α)

{
Zt +

∫ t

0

(t− s)αdWs

}
, (1.3)

where {Ws, s ∈ R} is a standard Brownian motion, α = H − 1
2 ∈

(
− 1

2 ,
1
2

)
and

Zt =
∫ 0

−∞
[
(t − s)α − (−s)α

]
dWs. Since the process Zt has absolutely continuous

trajectories, it suffices to consider the term

Bt =
∫ t

0

(t− s)αdWs. (1.4)

In fact, Bt is a fractional Brownian motion of the Liouville form.

In our filtering problems, we consider the observation process Yt of the form

Yt =
∫ t

0

hsds+Bt , (1.5)

with Bt defined by (1.4), where ht is some continuous process, ht = h(Xt).

Since Bt =
∫ t

0
(t − s)αdWs can be approximated by a semimartingale Bε

t as

shown below, our filtering problem can be considered as the limit case of following
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filtering problems when ε→ 0:

Signal process: Xt ,

Observation process: Y ε
t =

∫ t

0

hsds+Bε
t ,

(1.6)

where Bε
t is some semimartingale for every ε > 0 .

2. L2-approximation for Bt

Let BH
t be the fractional noise in the observation process Yt in (1.5) and

Wt the corresponding Brownian motion in its representation (1.3). Suppose that

0 < α < 1
2 , where α = H − 1

2 .

Define

Bt =
∫ t

0

(t− s)αdWs , (2.1)

and

Bε
t =

∫ t

0

(t− s+ ε)αdWs , (2.2)

for every ε > 0.

The Ito stochastic differential of Bε
t is then:

dBε
t =

( ∫ t

0

α(t− s+ ε)α−1dWs

)
dt+ εαdWt . (2.3)

Indeed by applying of the stochastic theorem of Fubini, we have∫ t

0

∫ s

0

(s− u+ ε)α−1dWsds =
∫ t

0

[
∫ s

u

(s− u+ ε)α−1ds]dWu

=
1
α

[
∫ t

0

(t− u+ ε)αdWu − εαWt]

=
1
α

[Bε
t − εαWt].

Therefore

Bε
t = α

∫ t

0

[
∫ s

0

(s− u+ ε)α−1dWs]dt+ εαWt ,

or

Bε
t =

∫ t

0

αϕε
sds+ εαWt , (2.4)

or equivalently,

dBε
t = αϕε

tds+ εαdWt , (2.5)
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where

ϕε
t =

∫ t

0

(s− u+ ε)α−1dWs ,

so Bε
t is a semimartingale.

We would like to recall here a fundamental result [8] on the L2- convergence

of semimartingales Bε
t to the fractional process Bt as ε→ 0. Basing on this result we

introduce an approximate approach to fractional filtering problems.

Theorem 2.1. Bε
t converges to Bt in L2(Ω) when ε tends to 0. This convergence is

uniform with respect to t ∈ [0, T ].

3. Fractional filtering for a general signal process

We consider first a filtering problem where the signal process is a general

stochastic process (Xt, t ≥ 0) with E|Xt| < ∞ for every t > 0 and the observation

process Yt is given by

Yt =
∫ t

0

hsds+Bt , 0 ≤ t ≤ T, (3.1)

where Bt is the fractional process given by (1.4) and ht = h(Xt) is a continuous

process with

E

∫ t

0

h2
sds <∞ . (3.2)

Now for every ε > 0 we establish a new filtering problem (an ’approximate’

one), where the signal process is (Xt, 0 ≤ t ≤ T ), E|Xt|2 < ∞ and the observation

process is

Y ε
t =

∫ t

0

hsds+Bε
t , 0 ≤ t ≤ T (3.3)

where Bε
t is given by (2.2), and T is some positive real number.

From now on, we take ε = 1
n and put

Ft = FY
t : σ-algebra generated by (Ys, s ≤ t)

F (n)
t = FY 1/n

t : σ-algebra generated by (Y 1/n
s , s ≤ t).

Define the filter πt of (Xt) based on observations (Yt) as the following condi-

tional expectation

πt(X) = E(X|Ft), or more general
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πt(f) = E(f(X)|Ft), f is any continuous and bounded function on R : f ∈

Cb(R).

Denote also by π(n)
t the filter of X based on observation Y 1/n

t :

π
(n)
t (X) = E(X|FY 1/n

t )

and

π
(n)
t (f) = E(f(X)|FY 1/n

t ), f ∈ Cb(R).

Theorem 3.1. The filter π(n)
t converges to πt in L2(Ω,F , P ) as n→∞.

Proof. Consider two observations

Y
1/n
t =

t∫
0

hsds+B
1/n
t (3.4)

and

Z
1/n
t =

t∫
0

hsds+Bt+ 1
n
, (3.5)

where B1/n
t =

t∫
0

(t+ 1
n − s)αdWs and Bt+ 1

n
=

t+ 1
n∫

0

(t+ 1
n − s)αdWs.

We observe that

E|Y 1/n
t − Z

1/n
t |2 = E|B1/n

t −Bt+ 1
n
|2 = E|

t+ 1
n∫

t

(t+
1
n
− s)αdWs|2

=

t+ 1
n∫

t

(t+
1
n
− s)2αds =

1
2α+ 1

1
n2α+1

→ 0 (n→∞) (3.6)

where the last equality of (3.6) holds by virtue of the Itô isometry.

Now it follows from the convergence

‖Y 1/n
t − Z

1/n
t ‖L2 → 0 as n→∞

that

‖E(Xt|Y 1/n
t )− E(Xt|Z1/n

t )‖L2 → 0 as n→∞ (refer to [5])

or more general
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‖E(Xt|FY 1/n

t )− E(Xt|FZ1/n

t )‖L2 → 0 as n→∞ ,

and for f ∈ Cb(R) :

‖E
(
f(Xt)|FY 1/n

t

)
− E

(
f(Xt)|FZ1/n

t

)
‖L2 → 0 as n→∞ . (3.7)

Since the family of σ-algebras FZ1/n

t is non-increasing such that
⋂
n
FZ1/n

t =

FY
t then it follows from a Levy theorem on the convergence of conditional expectations

that (refer to [5] or to [7]):

E
(
f(Xt)|FZ1/n

t

) L2

−−→ E
(
f(Xt)|FY

t

)
→ 0 as n→∞ . (3.8)

By combining (3.7) and (3.8) and using the Minkowski inequality we have

E
(
f(Xt)|FY 1/n

t

) L2

−−→ E
(
f(Xt)|FY

t

)
→ 0 as n→∞ , (3.9)

or π(n)
t → πt in L2 as n→∞ by notation of filters. �

4. Fractional filtering for a semimartingale

In this section we consider a filtering problem where the signal process is a

semimartingale

Xt = X0 +
∫ t

0

Hsds+ Vt , (4.1)

where Vt is a Brownian motion and Ht is a stochastic process such that

E

∫ t

0

H2
sds <∞ , (4.2)

and the observation is the fractional process

Yt =
∫ t

0

h(Xs)ds+Bt , (4.3)

where Bt is a fractional Brownian motion defined as in (1.4) such that the correspond-

ing Brownian motion Wt in this expression is independent of Vt, and that

E

∫ t

0

h2(Xs)ds <∞ . (4.4)

As in Section II we can consider the ’approximate’ filtering problem:

102



ON THE FRACTIONAL STOCHASTIC FILTERING

Signal process:

Xt = X0 +
∫ t

0

Hsds+ Vt . (4.5)

Observation process:

Y
1/n
t =

∫ t

0

hsds+B
1/n
t , (4.6)

where B1/n
t is given by (2.2), and ht = h(Xt).

Replacing Bε
t in (4.6) for ε = 1

n by its expression in (2.4) we have:

Y
1/n
t =

∫ t

0

hsds+ α

∫ t

0

ϕ1/n
s ds+

1
nα
Wt, 0 ≤ t ≤ T , (4.7)

where ϕ1/n
t =

∫ t

0

(t− s+
1
n

)α−1dWs .

Put h̄s = hs + αϕ
1/n
s , then (4.7) becomes:

Y
1/n
t =

∫ t

0

h̄sds+
1
nα
Wt , 0 ≤ t ≤ T , (4.8)

So Y 1/n
t is a FW

t - semimartingale. Notice that

h̄2
s ≤ 2(h2

s + α2(ϕ1/n
s )2) ,

Eh̄2
s ≤ 2Eh2

s + α2E(ϕ1/n
s )2 ,

But by the Ito isometry, we see that

E(ϕ1/n
s )2 = E[(

∫ t

0

(t− s+
1
n

)α−1dWs)2]

=
∫ t

0

(t− s+
1
n

)2α−2ds ≤
∫ T

0

(t− s+
1
n

)2α−2ds <∞.

It follows from Fubini’s theorem that

E

∫ t

0

h̄2
sds <∞ (4.9)

Now define the innovation process:

ν
1/n
t = Y

1/n
t −

∫ t

0

π(n)
s (h̄)ds (4.10)

then ν1/n
t is a FY 1/n

t - martingale.
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Now we are in the position to write down the FKK ( Fujisaki - Kallianpur -

Kunita) equation for the filtering problem (4.1)- (4.3):

π
(n)
t (f) = π

(n)
0 (f) +

∫ t

0

π(n)
s (f(H))ds+

∫ t

0

[π(n)
s (f(X)h̄)− π(n)

s (f(X))π(n)
s (h̄)]dν1/n

s ,

(4.11)

where f ∈ Cb(R) and π(n)
0 (f) = E(f(X0)|FY 1/n

0 ).

Notice that from (4.5) we have

E|Xt| ≤ E|X0|+ E|
∫ t

0

Hsds|+ E|Vt|

≤ E|X0|+ T.E

∫ t

0

H2
sds <∞.

then by the Levy theorem we can see that L2- lim
n→∞

π
(n)
t exists as in proof of Theorem

3.1. Now we can state:

Theorem 4.1. The filter πt(f(X)) = E(f(Xt)|FY
t ) = L2- lim

n→∞
π

(n)
t (f) exists, where

π
(n)
t (f) satisfies the equation (4.11).

5. General fractional filtering

Suppose now that the signal process (Xt, 0 ≤ t ≤ T ) and the observation

process (Yt, 0 ≤ t ≤ T ) are fractional processes given by

Xt = X0 +
∫ t

0

Hsds+B
(1)
t , E|Xt| <∞, (5.1)

Yt =
∫ t

0

hsds+B
(2)
t , (5.2)

where

B
(1)
t =

∫ t

0

(t− s)βdUs , (5.3)

B
(2)
t =

∫ t

0

(t− s)αdWs , (5.4)

Us and Wt are two independent standard Brownian motions, β = H1− 1
2 , α = H2− 1

2 ,

H1 and H2 are two Hurst parameters and 0 < α, β < 1
2 .
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Ht and ht are Ft-adapted process, ht = h(Xt) with continuous function h(.),

such that

E

∫ t

0

H2
sds <∞ , (5.5)

E

∫ t

0

h2
sds <∞ , (5.6)

As before we consider an ”approximate model” for the filtering problem (5.1)-

(5.6) as follows:

Signal:

X
1/n
t = X0 +

∫ t

0

Hsds+B
(1)1/n
t , 0 ≤ t ≤ T , (5.7)

Observation:

Y
1/n
t =

∫ t

0

hsds+B
(2)1/n
t , 0 ≤ t ≤ T , (5.8)

where ht = h(X1/n
t ) and

B
(1)1/n
t =

∫ t

0

(t− s+
1
n

)βdUs

and

B
(2)1/n
t =

∫ t

0

(t− s+
1
n

)αdWs . (5.9)

The filter π(n)
t for the problem (5.7)-(5.8) is defined as

π
(n)
t (f) = E[f(X1/n

t )|FY
1/n

t
t ], f ∈ Cb(R) (5.10)

and we will verify if the filter πt for the original problem (5.1)-(5.6) can be defined as

a L2-limit of π(n)
t as n→∞.

We need the following lemma (refer to [7]).

Lemma 5.1. Let (Xn) be a sequence of random variables such that for every n,

|Xn| ≤ Y , where Y is integrable. If (Fn) is an increasing (resp. decreasing) sequence

of σ-algebras, then E[Xn|Fn] converges a.s to E[X|F ], where F = σ(∪Fn) (resp.

F = ∩Fn)
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Proof. Take ε > 0 and put

A = inf
k≥m

Xn, B = sup
k≥m

Xn (5.11)

where m is chosen such that

E[B −A] < ε . (5.12)

Then for n ≥ m we have

E[A|Fn] ≤ E[Xn|Fn] ≤ E[B|Fn]. (5.13)

The left and right- hand sides of (5.13) are martingales converging a.s. to

E(A|F) and E(B|F) respectively. We have

E(A|F) ≤ lim E(Xn|Fn) ≤ lim E(Xn|Fn) ≤ E(B|F) , (5.14)

and

E(A|F) ≤ E(X|F) ≤ E(B|F) , (5.15)

It follows that

E[lim E(Xn|Fn)− lim E(Xn|Fn)] ≤ ε ,

hence E(Xn|Fn) converges a.s. and the limit is E(X|F).

Remark. The Lemma 5.1 still holds if we replace the a.s. convergence by

the L2- convergence (refer to [5]).

Theorem 5.1. Under the conditions given by (5.1)-(5.8) the filter πt(f) =

E[f(Xt)|FY
t ] is determined by

πt(f) = L2- lim π
(n)
t (f), f ∈ Cb(R)

where π(n)
t satisfies the following filtering equation

π
(n)
t (f) = π

(n)
0 (f) +

∫ t

0

π(n)
s (f(H̄))ds+

∫ t

0

[π(n)
s (f(X)h̄)−π(n)

s (f(X))π(n)
s (h̄)]dν1/n

s ,

(5.16)

and

H̄t = Ht + βψ
1/n
t ,where ψ1/n

t =
∫ t

0

(t− s+
1
n

)βdUt , (5.17)

h̄t = ht + αϕ
1/n
t ,where ϕ

1/n
t =

∫ t

0

(t− s+
1
n

)αdWt , (5.18)
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ν
1/n
t = Y

1/n
t −

∫ t

0

π(n)
s (h̄)ds, (5.19)

Ht and ht satisfy conditions (5.5) and (5.6) and X1/n
t and Y 1/n

t are defined by (5.7),

(5.8) and (5.9) for 0 ≤ t ≤ T .

Proof. It follows from the definition (5.7) for the process X1/n
t and from Theorem 2.1

that X1/n
t → Xt in L2(Ω,F , P ) as n→∞.

As for Y 1/n
t defined by (5.8) we can see that

Y
1/n
t − Yt =

∫ t

0

[h(X1/n
s )− h(Xs)]ds+B

(2)1/n
t −B

(2)
t , (5.20)

where h : R→ R is a continuous function by assumption, then the L2-convergence of

B
(2)1/n
t and X1/n

t respectively to B(2)
t and Xt implies that of Y 1/n

t to Yt.

Now by a calculation as in the proof of Theorem 4.1 we have

X
1/n
t = X0

∫ t

0

H̄sds+
1
nβ
Ut , (5.21)

Y
1/n
t =

∫ t

0

h̄sds+
1
nα
Wt , (5.22)

where

H̄s = Hs + βψ
1/n
t , ψ

1/n
t =

∫ t

0

(t− s+
1
n

)βdUs ,

h̄s = hs + αϕ
1/n
t , ϕ

1/n
t =

∫ t

0

(t− s+
1
n

)αdWs .

By the Ito isometry we can see that:∫ t

0

EH̄2
sds <∞ and

∫ t

0

Eh̄2
sds <∞ . (5.23)

Then we can write the FKK filtering equation for the approximate model

(5.21)-(5.22)-(5.23) as in (5.16), where ν1/n
t is the innovation process

ν
1/n
t = Y

1/n
t −

∫ t

0

π(n)
s (h̄)ds.

Here π(n)
t (f) = E(f(X1/n

t )|FY
1/n

t
t ).

Because X1/n
t → Xt and Y 1/n

t → Yt in L2 and also

‖E
(
f(X1/n

t )|FB(2)1/n

t

)
− E

(
f(X1/n

t )|FZ1/n

t

)
‖L2 → 0 as n→∞ , (5.24)
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where Z1/n =
t∫
0

hsds + B
(2)

t+ 1
n

, so an analogous assertion to the proof of Theorem

3.1 says that πt(f) = L2- lim
n→∞

π
(n)
t (f) exists where π(n)

t satisfies the FKK filtering

equation (5.16). �
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