RELAXED CONTROL FOR A CLASS OF SEMILINEAR
IMPULSIVE EVOLUTION EQUATIONS'
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AHBSTRACT

Relaxed control for a class of semilinear impulsive evolution equations is investigated. Boundedness
of solutions of semilinear impulsive evolution equations is proved and properties of original and
relaxed trajectories are discussed. The existence of optimal relaxed control and relaxation results are
also presented.
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1. INTRODUCTION

In this paper, we present sufficient conditions of optimality for optimal relaxed control problems
arising in systems governed by semilinear impulsive evolution equations on Banach spaces.
The general descriptions of such systems are given below.

4

X0 = AXO)+ (6, X0, 1), 1€ 11D (1a)
#(0)=x, e X, (1b)
Ax(t) = F.(x(1)), i=1,2,...0 (1¢)

where / = [0, 7| is a bounded closed interval of the real line R, and let the set
D= {1, 1, .., 1} be a partition on [0, 7] such that 0 < 1, <4,<..<t <T. In general, the
operator 4 : D(4) € X — X is the infinitesimal generator of a strongly continuous semigroup
{T(r), t 2 0}, fis a nonlinear perturbation, Ax(f) = x(¢) —x(#, ) =x(t') - x(t,), i = 1, 2, ...n,
and F's are nonlinear operators. This model includes all the standard models used by many
authors in the field (see Sattayatham & Huawu [8], Ahmed [1]). The objective functional is

given by J(x, u) = [ L(t, x(t), u(d)al.
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In recent years impulsive evolution equations on infinite dimensional Banach spaces have
been considered in several papers by Liu [5] and Ahmed [1]. Liu considers the problem of
existence and regularity of the solution while Ahmed considers the optimal impulsive control
problem and necessary conditions, but sufficient conditions of relaxation for optimality were
not addressed. We wish to present just that. Before we can consider such problems, we need
some preparation. The rest of the paper is organized as follows. In Section 2, some basic
notations and terminology are presented. Section 3 contains some preparatory results. Relaxed
impulsive systems are presented in Section 4. Sufficient conditions of relaxation for optimality
are discussed in Section 5.

2. SYSTEM DESCRIPTIONS

Let X'be a Banach space. Let C([0, 7], X) be the Banach space of all continuous functions from
[0, 77 into X'with the supremum norm, i.e., [|x|| = sup{||x(¢)||. : 0 <z < T}. The operator 4 : D(4)
© X — Xis the infinitesimal generator of a strongly continuous semigroup {7(z), ¢ > 0}.

Let PC([0, T], X) denote the space of piecewise continuous functions on [0, 7] with values
in X which are left continuous and possessing right hand limits, Equipped with the supremum
norm topology, it is a Banach space. Consider the following evolution systems

g;x(r) = Ax(t)+ g(t, x(1)), tel\D, (2a)
x(0)=x, € X, (2b)
Ax(t,))=F(x(2,)), i =1,2,...m (2¢)

By a mild solution x(¢, x,) of the system (2a)-(2¢) corresponding to the initial state x € X,

we mean a function x € PC([0, 7], X) such that x(0) = x, and satisfy the following integral
equation

X(O)=T)x, + [T(t-5)g(s, x(s)ds + Y. T(~1)F(x(t,)), 0t <T.
0

O<n <t

3. PREPARATORY RESULTS

For the study ofrelaxation for optimality, it is essential to guarantee the existence and uniqueness
of solutions of the impulsive evolution equation and certain other related equations. Here in
this section, for the convenience of the reader, we quote some results from the recent work of
Liu [4]. But first, we recall some hypotheses on the data of problem (2a)-(2c).

(G) g:IxX— Xisan operator such that

1.t g(t, x) is measurable, the map x - g(4, x) is continuous, and there exists a constant
L> 0 such that

"g(!,x)—g(r.y)”£L||x-y|. tel,x,ye X.



Relaxed Control for a Class of Semilinear Impulsive Evolution Equatlons 69

2. There exists a constant £ > 0 such that
e, x) | <k +|xI)telxe X
(F)F:X— X,i=1,2, .., n, are continuous and there exist constants >0 1,2t
such that

IR - E)| < b=y

(A) Let T'(-) be the strongly continuous semigroup generated by the unbounded operator
A. Let B(X) be the Banach space of all linear and bounded operators on X. Denote

X ye kX,

M= max |7,y
and assume that
MI[LT + ihj}a.
k=]

By the uniform boundedness principle || 7(1)|,,, is bounded on [0, 7], so M in hypothesis
(A) is finite. We state the following results which give sufficient conditions for the existence of
a mild solution.

Theorem 3.1: Let hypotheses (A), (G), and (F) be satisfied. Then for every x € X,
equations (2a)-(2¢) has a unique mild solution. Moreover, the set of mild solutions is bounded
in PC([0, T, X).

Proof: For the existence and uniqueness of the mild solutions, see Liu ([5], Theorem 2.1).
Moreover, one can prove the boundness of the set of mild solutions by using Grownwall
inequality. To see this, suppose that x(-) is a mild solution of equation (2a)-(2c). Then we have

2@ < IT@)x, I+ LII T(t=s)|l Il g, x()llds+ 3 NTE =)l | EG@ )|

Ok <t

< M|x, || +Mk [ (+ ]| x() Dds + M Y || Gt ) |

Q=i <t

< M || %, || +MKT + Mk [ || x(s)]| ds + M,

Applying Grownwall inequality on each subinterval for which x(¢) is continuous, we obtain

x| < (M, +M||x ||+ MET)e™ "

< (M, + M| x, ||+ MkT)e"™ = M,,
for some constants M, and M,. This proves that the set of mild solutions is bounded in
PC([0, 7], X).

Now, let us consider the corresponding control system. We model the control space by a
separable complete metric space Z (i.e., a Polish space). By P, (Pr.), we denote a class of
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nonempty closed (closed and convex) subsets of Z. Let / = [0, T]. Recall that a multifunction
[': I— P/(Z) is said to be measurable if for each F € Py(Z), I"'(F) is Lebesgue measurable in

1. We defined S, to be the set of all measurable selections of I'(-), i.e.,
S, = {u:1- Z| u(f) is measurable and u(t) € I'(¢), p-ae. 7 € I},
where p is the Lebesgue measure on /. Note that the set S_ # ¢ if I': / — Py(Z) is measurable

(see Li & Yong [6]. Theorem 2.23, p.100). Consider the following control systems
%x(r) = Ax(t) + g(t, x(1), u(r)), t€[0,T]\ D, (3)
x(0)=x,e X,
Ax(t)=Fi(x(t)), i=12, .,
Here, we require the operators 4, and F's of (7) to satisfy hypothesis (A) and (F)

respectively. We now give some new hypotheses for the remaining data.

(U) U:1-> Py (Z) is ameasurable multifunction satisfying U(-) < K, where K is a compact
subset of Z. For the admissible controls, we choose the set U, = S,,.

(Gl) g: Ix XxZ— Xis an operator such that

1. 1+ g(r. x, z) is measurable, the map (x, z) > g(¢, x, z) is continuous on X * Z, and there
is a constant £ > 0 such that

Hg(.f.x,.z}—g(f.x:.z)HsLHx] -x,|, forall tel,x,x,€X, and z€ Z.

2. There exists a constant £ > 0 such that ||g(t, x, 2)|| < k(1 +||x|),t e Lx e X,and z € Z.

By assumption (U), the control set S,, is nonempty and is called the class of original control.
Now, let us define

X, = {(x € PC([0, T]. X) | x is a solution of (3) corresponding to u}.

X, is called the class of original trajectories.

A, = {(x, u) € PC([0, T], X) x §,,| x is a solution of (3) corresponding to u}.
A, is called the class of admissible state-control pairs.

The following theorem guarantees that X # ¢. Its proof follows immediately from
Theorem 3.1 by defining the function g (4, x) = g(4, x, ) and noting that g satisfies all hypotheses
of Theorem 3.1.

Theorem 3.2: Assume that hypotheses (A),(F), (G1) and (U) hold. For every u € §

{74
equation (3) has a unique mild solution x(z) € PC([0, T, X). Moreover, the set of mild solutions

is bounded in PC([0. 7], X).
4. RELAXED IMPULSIVE SYSTEMS

We consider the following optimal control problem

(P) inf {J(x, u)= IL(I, x(1), u(n))dt}

subject to equation (3).
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It is well known that, to solve optimization problems involving (P) and obtain an
optimal state-control pair, we need some kind of convexity hypothesis on the orientor field
L(t, x(1), u(r). If the convexity hypothesis is no longer satisfied, in order to get an optimal
admissible pair, we need to pass to a larger system with measure control (or know as “relaxed
control™) in which the orientor field has been convexified. For this purpose, we introduce the
relaxed control and the corresponding relaxed systems.

Let Z be a separable complete metric space (i.e., a Polish space) and B(Z) be its Borel
o-field. Let (Q, Z, 1) be a measure space. We will denote the space of probability measures on
the measurable space (Z, B(2)) by M' (Z).

A Caratheodory integrand on Q x Z is a function f: Q x Z — R such that f(:, x) is
Z-measurable on Q, f(w, -) is continuous on Z for all ® € Q, and sup{| f(w, z)|: z € Z} < (),
a.e., for some functions a(-) € L (Q). We denote the set of all Caratheodory integrands on
Q x Zby Car(Q, Z).

By a transition probability, we mean a function A : (2 x B(Z) — [0, 1] such that for every
A € B(Z), M-, A) is Z-measurable and for every ® € Q, Mo, -) € M. (Z). We use R(Q, Z) to
denote the set of all transition probabilities from (Q, X) into (Z, B(Z)). Following Balder [2],
we can define a topology on R(Q, Z) as follows : Let f € Car(€2, Z) and define

1L,(0)= [ [ [0 2Mo)d)dno). )

The weak topology on R(Q, Z) is defined as the weakest topology for which all functional
.’J,: R(Q, Z) —» R, f € Car(Q, Z), are continuous.

Supposing Q = /= [0, 7] and Z is a compact Polish space, then the space Car(/, Z) can be
identified with the separable Banach space L (I, C(Z)) where C(Z) is the space of all real
valued continuous functions on Z. To see this, we associate to each Caratheodory integrand
O(-, -) the map ¢ +— ¢(t, -) € C(Z). Let M(Z) be the space of all regular bounded countably
additive measures defined on B(Z). We note that M(Z) is a Banach space under the total variation
norm, i.e., || A ||, =[2[(Z). Then by the Riesz representation theorem, the dual [C(Z)]" can be
identified algebraically and metrically with M(Z). The duality pair between M(Z) and C(Z) is
given by

M Sy = [ f@Me).

So M(Z) is a separable (see Warga [9], p.265) dual Banach space and hence has a Radon-
Nikodym property. This observation combined with Theorem 1 of Diestel and Uhr [3, p. 98],
tells us that

L(1,C(2)) = L.(I,M(Z)). (5)

Hence the weak topology on R(/, Z) coincides with the relative w'(L_ (I, M(Z))),
L (I, C(Z))-topology.
The duality pair between L_(/, M(Z)) and L (1, C(Z)) is given by

s 0= J‘(M:), S@)dt (6)
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which is the same formula as in (4) with 7, z) = f{r)(z). This fact will be useful in the study of

the relaxed control system where the control functions are transition probabilities.

Now we introduce some assumptions imposed on the class of relaxed controls which will
be denoted by S,.

(U1) Z is a compact Polish space, U : I — Py(Z) is a measurable multifunction.

Define Z(7) = {L € M' (Z), MU()) = 1} and let S, € R(I, Z) be the set of transition
probabilities on / x B(Z) that are measurable selections of Z(-). For any « € §,,, we define
the relaxation 8, € S of u by 8 (1) = Dirac probability measure at «(7). Then we can identify

S, < §;. From now on, we shall consider S, and S as a subspace of the topological space
R(I, Z) with the weak topology defined above.

We list two lemmas which will be useful in discussing the relaxation problem. The proofs
can be found in Warga [9, Theorem IV 2.1] and Balder [2, Corollary 3] respectively.

Lemma 4.1: Suppose Z is a compact Polish space. Then S is convex, compact, and
sequentially compact.

Lemma 4.2: S, is dense in S,.

The following theorem is the Arzela-Ascoli Theorem for continuous vector-valued
functions. A proof of this result can be found in Carroll [3, Theorem 8.18, p. 34].

Theorem 4.3: (Arzela-Ascoli) A subset K < C(/, H) is relatively compact if and only if K
is equicontinuous and for all t € 1, K(1) = { f(1) | f € K} is a relatively compact subset of H.

Next, let us consider this new larger system know as “relaxed impulsive system”

i(f) = Ax(1)+ L g(t, x(0), 2)Mt)(dz), 0<t<T, (7)

%(0) = x,
Ax(t) = F(x@));, 1=L2,.m

We will denote the set of trajectories of (7) by X, ie.,
X, = {x € PC(J, X) | x is a mild solution of (11) corresponding to A € S, }.
Moreover, the set of admissible state-control pairs of (7) will be denoted by
A, = {(x, &) € PC(, X) x S | x is a mild solution of (7) corresponding to A € S, }.
Note that X, ¢ X, since S, c S,, and, if the hypotheses of Theorem 3.2 are satisfied,

X, # ¢ = X # ¢. To see this, given any relaxed control & € S, if we set g(z, x(), (1)) = L e

(1, x(1), z)M(r)(dz) then, working as in the proof of Theorem 3.2, one can show that there exists
arelaxed admissible trajectory x(A) corresponding to A. We now summarize the above discussion
into a theorem.
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Theorem 4.4: Assume that hypotheses (A), (F), (Gl) and (U1) hold. For every A € S,
equation (7) has a unique mild solution x(A) € PC(/, X). Moreover the set X is bounded in
PC(L X). i.e., || x(A) || x(X) “Pw.)n < Mforall A € §..

The next theorem gives us a useful relation between X and X .

Theorem 4.5: If assumptions (A). (G), (F), (G1) and (U1) hold, then X =Z, (closure is
taken in PC(/, X)).

Before proving this theorem, we need a lemma.

Lemma 4.6: [f assumptions (A), (G), (F), (G1) and (U1) hold and A, — A in R(L Z).
Suppose that {x,, x} is the solution of (7) corresponding to {A,, A }. Assume further that there
exists y € PC(/, X). such that x, — y as k — . Then y is a solution of (7) corresponding to the
control variable A.

Proof: Since x, is a solution of (7) corresponding to the control variable A, then

x, () =T()x, + _[: T(t—-s) L g(s, x,(s), 2)A, (s)(dz)ds + Z T =1)F(x(1),0<r<T.

Oty <t

We aim to prove that y is a solution of (7) corresponding to the control variable A, i.e., we
shall show that

) =T()x, + E T(t—s) Lg(s, Y(8), 2)Ms)dz)ds + z T(=1)F (). 0<t<T.

Oy <1t
For each fixed 0 <7< T, and h" € X, we denote the duality pair between Xand X" by (,, .)
and denote A (s, z) = (T(t —s)g(s, ¥(s), z), k"), where 0 <s <1< T, z € Z. It follows from (G1)

that A (s, z) is a Carathedory integrand. Then, by the topology on R(/, Z), we have

L_,, f,, (T(1-5)g(s, y(s), 2), b YA, (s)(dz)dt —> Io.u L (T(t - 5)g(s, ¥(s), z, B Y\(s)(dz)dl in R,

as n — «. Hence

<L,_,] [ 7@ =9)g(s, y(5), W (s)(d2)dt, ) > (LJ] [ 7= 5)g(s, y(s), M) (dz)et, ) in R,

as n — 0. Since A" is an arbitrary element in X" then
[m L T(t - s)g(s, ¥(s), 2)k, (s)(dz)dt — IM J; T(t —5)g(s, y(s), Ms)dz)dt in X, (8)

as n — . Moreover, we note that

I [7@=5) [ el (o)dds = [ [ Tt 5)g(s, y(s), 2 (s)(d2)ds
+ [y, L T=5)80, y() N )yt = [ [ T =5)g(s, y(5), M(s) @zl |

<|| [T -9 [, g(s.x(0). DM ()ei)ds = [ [ T(t=s)g(s. y(s), D, (s)e)ds || (9)
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+| _[n"] L T(t —s5)g(s, y(s), 2)A, (s)(dz)ds — ‘[M jz T(1—s)g(s, y(s), z)A(s)(dz)ds ||

It follows from equation (8) that the second expression of inequality (9) converges to zero
as k — 0. The first expression also converges to zero. To see this, we note that

I [7G=9[ el x (o) DM (oXdds - [ [ T(=)gs, y(s) 2, (5)d)ds
S [y LITC=9)llyin 11 8Cs.2,(5).2) = 85 7(5).2) I Ay (5)(l2)els
< [ LML) = 50 Ly My (s)Xdz)dls (assumption Gl)
< [ 1356 = 26 e ([, MLL, (s)(dz))ds
< [, 1%0) = y(9) |y MLA, (s)(Z)ds

< ML J;o | x,(s)—»(s)||y ds >0 as k—>o. (A, (s5)isa probability measure on Z)

W]

Now we turn to the jump part.

| Y T —=t)F )= Y. T —1)E W)l

O<ty <t < <t
< YT =) lagay 1| F G (6)) = F e, Ml
Oty <1

<M Z ” F:(xj;(f;))_Fi(y(!i ) ”'r'

<t <1

<MY hllx)-y) =0 as k.

Ot <i

This prove that

limx, =7()x, + [ 7= 5) [, g(s, ¥(s), Ms)de)ds + 3 T ~1)F; (5, (1).

Oty <t
By the assumption, we get iim x, = y. Hence y is the solution (7) as required.
a0

Lemma 4.7: If assumptions (A), (G), (F), (G1)and (U1) hold, the semigroup {7{¢}} in the
assumption (A) is compact, and A, — A in R(/, Z). Suppose that {x,, x} is the solution of (7)
corresponding to {A,, A}, by working with a subsequence is necessary, x, — x in PC(J, X) as
k— .

Proof: Suppose that A, > A in R(J, Z) as k — o and {x,, x} is the solution of (7)
corresponding to {A,, A}. Since (x,, A,) € 4, for each positive integer £, then (x,, A,) must
satisfy the equation
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x, () =T(t)x, + £ T(t—s) L (s, x,(5). 2)A, (s)(dz)ds + Z T(—1)E(x,(1)),0<t<T,

D<=t

while (x, &) satisfies

x(n)=T()x, + ET(: =) L 2(s, x(s), 2)A(s)dz)ds + Z T(t—1)F(x(1)),0<r<T.
: Det =t

To finish the proof, we try to choose y € X such that y is a solution of (7) corresponding to
this A and x, — y in PC(/, H) as k — . The unique property of solution of (7) implies x = y and
hence x, — x in PC(/, X) and we are done. Since x, is a mild solution of (7), then
by Theorem 4.4, {x,} is a bounded sequence in PC(J, X). By using the same technique as in
[7. p. 193], one can prove that the set {x,} is equicontinuous. To see this, let p, £, ¢ € [0, 7] be
such that 0 < p <1< /. Let N = sup{|| g(s, x,(s), 2)|| : s € [0, 7], z € Z} which is finite and
independent of & since g is continuous on the compact space Z the solution set {x, } is bounded,
and hypothesis G . Then

1@ =50 < ITE)% =T@x 1+ [ TG -5), 86, %), 2, (sX)ds |
HICT+ [ )T =) =T =) [ gls.x, () 2, (s)d)ds |

+ 2N =D N EC )+ 3 NT @ = )T =) || || E )l

t<tp <t ten<r’

< T, = TWx, 1 +M [[1] [ 805, x,(5). 20 (s)(k2) | ds
+ [NT@ =) =T =5)1| [ ]| 8. x,(5). DA, (5)de) | ds
+ [ N7 =)= =)l [ g, x,(5) DN, () | ds

+ Y M EGUNI+ Y. T ~1)=T@ =)l | ECe ()l

t<t<t' O<ty <t
< | T()x, =T()x, || +MN(t' —1) + N‘E"pn T —s)=T(t—s)| ds+2MNp

+ 2 MIEG DI+ X T =)=T¢ )] | £ @)]]- (10)
I<t<i’ LB
Since 1 > p > 0 is arbitrary, and since 7{(¢) is continuous in the uniform operator topology
for ¢t = p > 0, the first four terms on right-hand of inequality (10) tend to zero as ¢ tends to ¢" and
p tends to zero. Moreover, the two jump terms also tend to zero as 7 tend to ¢’ since there is no
Jjump in the interval (¢, ¢') if length |/ — ¢'| is small enough. This proves that the set {x,} is
equicontinuous.
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LetK' ={x,} be the restriction of the sequence {x,} on the interval [0, 7 ], i.e., x, () = x, ()

on [0, 7] and equal to zero elsewhere. Clear K(0)= {x,} is compact in H. For 0 <e <r<1,
define

K@) ={TExt-¢): k=12,..)

For each ¢ € [0, ¢,], K'(¢) is a bounded subset of H and, by our hypothesis, 7(¢) is a
compact operator for 7 > 0, it follows from the above expression that K (7) is relative compact
for t € (g, 1) Further, by using the same proof as in (10), one can show that

sup{|| x, ()= T(e)x, (t —€)]| :k=1,2,..} >0 as € —>0.
Then the set K| (¢) can be approximated to an arbitrary degree of accuracy by a relatively
compact set. Hence K'(f) itself is relatively compact. Applying Arzela-Ascoli Theorem, the

sequence {x,} is relatively compact in C[0, 1,1, X). Then there exists a subsequence of {x;},
again denoted by {x, }, such that

x; =y in C([0,1,],X) as k—>w.

Now, let {x;} be the restriction of the sequence {x,} on the interval (1,, 1,], i.e., x; (1) =x,(f)
on (¢, t,] and equal to zero elsewhere. By using the same proof as above, there exists a
subsequence of {x;}. again denoted by {x;}, such that

xf _)y: in C((!g,ﬁ], ,Y) as k— o,

It is obvious that y?(1*) = }l‘im_ x, (1] ). Hence y* possesses a right hand limit. Continue this
process until to the interval (¢, 1,]. Define a function y on [0, 77 as follows:

x(0) if =0
=% . . s
Y I el 1) =012 0

Then y € PC([0, 7], H) and there is a subsequence of {x,} converges to y. Applying lemma
4.6, we get y is also a solution of (7). By uniqueness of the solution of (7), we get x = y. Hence
there is a subsequence of {x } converges to x and we are done.

Proof of Theorem 4.5: Firstly, we shall show that X 3(-; Let x € X, then there exists
A € S, such that (x, &) € 4,. By virtue of the density result as in Lemma 4.2, there exists a
sequence {#,} c S, such that in 8,, — A in R(/, Z). Let x, be the solution of (7) corresponding
to u,. Then we have a sequence {(x,, u,)} < 4,. Since for each £, (x,, u,) € 4, then (x,, u) must
satisfy the equation

#4(0) = A%, (0)+ [ g(t, x,1), 2)38,, (1)(dk2),
x(0)=x,e X,
Ax, (1) = FE(x, (1)) i=1,2,...n k=1,23,..
(0<t, <1, <...<t)
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Applying Lemma 4.7, we get x, = x in PC(/, X). This proves that x € Yﬁ and hence

X c X,. Finally, we will show that X is closed in PC(/, X). Let {x, } be a sequence of points in
X such that (x, = x) in PC(/, X) as k — . By definition of X, there is a sequence {A,} of
points in S; such that (x,, A,)) € 4,, k=1, 2, 3, ... . Lemma 4.1 implies that S, is compact in
R(I, Z) under the weak topology. Moreover, R(/, Z)-topology coincides with the relative
o' (L (I, M(Z)), L (1, C(Z)))-topology. Then, by passing to a subsequence if necessary, we may
assume that A, - A in R(/, Z) as k — . Applying Lemma 4.7, there is x € X such that

x, = x in PC(J, X) as k — ». Hence X is closed in PC(/, X) and consequently, X_n (= Yr st
The proof of Theorem 4.5 is now complete.

The following corollary is an immediate consequence of lemma 4.7.

Corollary 4.8: Under assumption of Theorem 4.5, the function A = x(1) is continuous
from S, < R(/, Z) into PC(/, X).

5. EXISTENCE OF OPTIMAL CONTROLS

Consider the following Lagrange optimal control problem (P,) : Find a control policy
A € S, such that it imparts a minimum to the cost functional J/ given by

(P) JM=JH = [ 105 @), DM,
where x* is the solution of the system (7) corresponding to the control A € S,. We form the
following hypothesis concerning the integrand /(., ., .).

(L)l:1x Hx Z— R {+ o} is Borel measurable satisfying the following conditions.

1. (&, z) > (1, . z) is lower semicontinuous on A x Z for each fixed .

2. There exist y(t) € L, (, R) such that |I(#, &, z)| < () for almost all r € 1.

3. [ maps bounded set into bounded set.

Let m = inf{J(A) : A € S;}. We have the following theorem on the existence of optimal
impulsive control.

Theorem 5.1: Suppose assumptions (A), (F), (G1), (U1), (L) hold and Z is a compact
Polish space, then there exists (x, 1) € 4, such that J(;, X) =m.

Before giving the proof of Theorem 5.1, we need a lemma. The proof is similar to Lemma
3.3in[10].

Lemma 5.2: Let h : I x H x Z— R be such that
I. 1> (1, x, z) is measurable and (x, z) > A(1, x, z) is continuous.
2. |h(t,x,z)|<y() e L())forall (x,z) e Hx Z.

Ifx, > x e C([0, 7], H) then

R = h(y0) in L(1,C(Z))

as k — oo, where j;, (¢, z) = h(t, x,(¢), z) and h(t, z) = h(t, x(t), z).
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Proof of Theorem 5.1: If J(L) = + e for all L € §_, then every control is admissible.
Assume inf {J(A) : h € S.} = m, <+ . By assumption (L), we have m_> — «. Hence m, is
finite. Let {A,} be a minimizing sequence so that lim,__ J(A) = m . By Lemma 4.1, S is
compact in the topology R(/, Z). Hence, by passing to a subsequence if necessary, we may

assume that A, — A in R(1, Z) as k — . This means that A, " A in L (I, M(Z))as k — =. Let

{x,, X } be the solution of (7) correspond to {A,, X}_ By Lemma 4.5, we get x, = X in PC(/, X)
and (%, 1) € A,. Next, we shall prove that (¥, i) is an optimal pair.

As before, we identify the space of Caratheodory integrand Car(/, Z) with the separable
Banach space L (/, C(Z)). We note that every lower semicontinuous measurable integrand
[:1xHxZ— Ru {+ =} is the limit of an increasing sequence of Caratheodory integrand
{/} € L (1 C(2)) for each fixed & € H. Thus, there exists an increasing sequence of Caratheodory
integrands {/} e L (/, C(Z)) such that

I(t, (), 2) Tt ¥(),2)asj>wforallre Lz e Z

Since x, - X in PC(/, X), by applying Lemma 5.2 on each subinterval of [0, 7],
Lt x(1), z) = 11, x,(1), z) as k — oo for almost all 7 € / and all z € Z. We note that since

AW A in L, (I, M (Z)) as k —» o, then

b —

JER) = (R0 = [ [ 10,50, )M )(de)el
=1_imj J’ 1, (t, % (1), M1 )(dz)dlt
= hmhmj [ 4,0 %), D, (0)(dz)dr

0 k-

< lim lim J' J’ 1,(t, x, (), 2N, (0)(dz)dlt =

k—px jam

However, by definition of m , it is obvious that J(¥, A = m,. Hence J(X, r) = m,. This
implies that (¥, &) is an optimal pair.

Remark: If J (x, u) = j:!(t. x(1), u(r))dt is the cost functional for the original problem and
=inf{J(x. ) : u € U_;}. In general we have m_< m. It is desirable that m_= m, i.e., our
relaxation is reasonable. With some stronger conditions on /, i.e., the map (&, n, z) = U1, &, 2)
is continuous and | I(t, &, z) | < 6,(¢) for all most all 7 € 7 and 0, € L,()), one can show that
m_=m. The proof is similar to Theorem 4B in [10].
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