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Abstract. In this paper,we introduce an approximate approach to a fractional Black-

Scholes model with jumps perturbed by fractional noise. Based on a fundamental result

on the L2-approximation of this noise by semimartingles, we prove a convergence of

theorem concerning an approximate solution. A simulation example shows a significant

reduction of error in a fractional jump model as compared to the classical jump model.
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1. Introduction

In some recent papers (see for examples [5, 6]), some fractional Black-Scholes
model have been proposed as an improvement of the classical Black-Scholes.
Common to these models is that they are driven by a fractional Brownian mo-
tion and that some stochastic calculus is created by using, for example, Malliavin
calculus or Wick product analysis. Recently, and approximate approach to frac-
tional Black-Scholes model is introduced and investigated in [10]. In this paper
we use this approach to study a fractional Black-Scholes model with jumps.

Recall that a fractional Brownian motion BH
t with Hurst index H, is a

centered Guassian process such that its covariance function R(t, s) = EBH
t BH

s

is given by
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R(t, s) =
1
2
(|t|γ + |s|γ − |t − s|γ ), where γ = 2H and 0 < H < 1.

If H = 1
2 , R(t, s) = min(t, s) and BH

t is the usual standard Brownian motion.
In the case 1

2
< H < 1 the fractional Brownian motion exhibits statistical

long range dependency in the sense that ρn := E[BH
1 (BH

n+1 − BH
n ] > 0 for all

n = 1, 2, 3, ... and Σ∞
n=1 ρn = ∞ ([9, page 2]). Hence, in financial modelling, one

usually assumes that H ∈ (1
2 , 1). Put α = H − 1

2 .It is known that a fractional
Brownian motion BH

t can be decomposed as follows:

BH
t =

1
Γ(1 + α)

[Zt +
∫ t

0

(t − s)αdWs],

where Γ is the gamma function,

Zt =
∫ 0

−∞
[(t − s)α − (−s)α]dWs,

and Wt is a standard Brownian motion. We suppose from now on 0 < α < 1
2 .

Then Zt has absolutely continuous trajectories and it is the term Bt :=
∫ t

0
(t −

s)αdWs that exhibits long range dependence. We will use Bt instead of BH
t

in fractional stochastic calculus. The fractional Black-Scholes model under our
consideration is of the form

dSt = St(µdt + σdBt), 0 ≤ t ≤ T, (1)
S(0) = S0,

where St is the price of a stock, µ, and σ are constants, and Bt as given above.
Now, consider the corresponding approximate model of (1)

dSε(t) = Sε(t)(µdt + σdBε(t)), 0 ≤ t ≤ T, (2)
Sε(0) = S0 (same initial condition as in (1)),

where Bε(t) =
∫ t

0
(t− s+ ε)H− 1

2 dW (s), 1
2 < H < 1. Referring to the main result

of Thao [10, Theorem 4.2], the solution Sε(t) of equation (2) converges to the
solution St of (1) in L2(Ω) as ε → 0.

In this paper, we extend the main result of Thao [10] to a fractional Black-
Scholes model with jumps. We also prove that the solution of our approx-
imate models converges to the solution of the fractional Black-scholes model
with jumps. In summary, this paper is organized as follows: In Sec. 2, we review
the definition of the Poisson random measure and some preliminary notions of
jump-diffusion processes which mostly come from [2]. In Sec. 3, we follow the
general setting of [7, page 143] to consider the stock price model with jumps.
In Sec. 4, we discuss an approximate model for a fractional stock-price model
with jumps. Finally, we give some simulation examples to show the accuracy of
approximations by the fractional Black-Scholes model with jumps as compared
to the classical Black-Scholes model with jumps.
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2. Poisson Random Measures

A Poisson process (N (t), t ≥ 0), with intensity λ, is defined as follows:

N (t) =
∑

n≥1

1{Tn≤t},

where Tn =
n∑

i=1

τi and τ1, τ2, ... is a sequence of independent, identically exponen-

tially distributed random variables (defined on some probability space (Ω,FFF , P ))
with parameter λ, that is, P (τ1 > t) = e−λt. N (t) is simply the number of jumps
between 0 and t, i.e.,

N (t) = #{n ≥ 1, Tn ∈ [0, t]}.

Similarly, if t > s then

N (t) − N (s) = #{n ≥ 1, Tn ∈ (s, t]}.

The jump times T1, T2, . . . , form a random configuration of points on [0,∞)
and the Poisson process N (t) counts the number of such points in the interval
[0, t]. This counting procedure defines a measure N on [0,∞) := R+ as follows:
For any Borel measurable set A ⊂ R+,

N (ω, A) = #{n ≥ 1, Tn(ω) ∈ A} =
∑

n≥1

1A(Tn(ω)).

N (ω, ·) is a positive integer valued measure on Borel subsets of R+. We note
that N (·, A) is finite with probability 1 for any bounded set A ⊂ R+. The
measure N (ω, ·) depends on ω; it is thus a random measure. The intensity λ of
the Poisson process determines the average value of the random measure N (·, A),
that is

E[N (·, A)] = λ|A|,

where |A| is the Lebesgue measure of A.
N (ω, ·) is called a Poisson random measure associated with the Poisson process
N (t). The Poisson process N (t) may be expressed in terms of the random
measure N in the following way:

N (ω, t) = N (ω, [0, t]) =
∫

[0,t]

N (ω, ds).

Conversely, the Poisson random measure N can also be viewed as the “deriva-
tive” of a Poisson process. Recall that each trajectory t 7→ N (ω, t) of a Poisson
process is an increasing step function. Hence its derivative (in the sense of dis-
tributions) is a positive measure on σ−algebra of Borel sets of R+. In fact, it
is simply the superposition of Dirac masses located at the jump times:

d

dt
N (ω, t) =

∑

n≥1

δTn(ω)(·) =: N (ω, ·),

hence, for any predictable process f(ω, s), the stochastic integral with respect
to the Poisson random measure N admits, for any t ∈ R+, the form
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∫ t

0

f(·, s)N (·, ds) =
∑

n≥1

f(Tn)1{Tn(ω)≤t}(·) =
N(·,t)∑

n=1

f(Tn),

or in a more compact form
t∫

0

f(s)dN (s) =
N(t)∑

n=1

f(Tn). (3)

We now assume that the Tn’s correspond to the jump times of a Poisson process
N (t) and that Yn is a sequence of indentically distributed random variables with
values in (−1,∞). Let S(t) be a predictable process. At time Tn the jump of
the dynamics of S(t) is given by

S(Tn) − S(Tn−) = S(Tn−)Yn, (4)

which, by the assumption Yn > −1, leads always to positive values of the prices.
If f(S, t) is a C{2,1}-function (this means that f is C2 in the first variable

and C1 in the second variable), then it follows from (3) that

∫ t

0

[f(S(s−)(1+Ys ), s)−f(S(s−), s)]dN (s) =
N(t)∑

n=1

[f(S(Tn), Tn)−f(S(Tn−), Tn)]

(5)
where Yt is obtained from Yn by a piecewise constant and left continuous time
interpolation. An application of equation (5) to the function f(S, t) = S for
S ≥ 0 yields

∫ t

0

[S(s−)(1 + Ys) − S(s−)]dN (s) =
N(t)∑

n=1

[S(Tn) − S(Tn−)]

or ∫ t

0

S(s−)YsdN (s) =
N(t)∑

n=1

[S(Tn) − S(Tn−)]. (6)

It then follow from equations (4) and (6) that
∫ t

0

S(s−)YsdN (s) =
N(t)∑

n=1

S(Tn−)Yn. (7)

The following lemma is an Ito’s formula for jump-diffusion process. Its proof
can be found in [2, p. 275].

Lemma 1. Let X be a diffusion process with jumps, defined as the sum of drift
term, a Brownian stochastic integral and a compound Poisson process:

X(t) = X(0) +
∫ t

0

b(s)ds +
∫ t

0

σ(s)dW (s) +
N(t)∑

n=1

∆Xn.

Here b(t), σ(t) are continuous nonanticipating processes with
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E

[∫ τ

0

σ2(t)dt

]
< ∞,

and ∆Xn = X(Tn) − X(Tn−) are the jump sizes. Then, for any C2,1 function,
f : R × [0, T ] → R, the process Y (t) = f(X(t), t) can be represented as:

f(X(t), t) − f(X(0), 0) =
∫ t

0

[
∂f

∂x
(X(s), s)b(s) +

∂f

∂s
(X(s), s)

]
ds

+
1
2

∫ t

0

σ2(s)
∂2f

∂x2
(X(s), s)ds +

∫ t

0

∂f

∂x
(X(s), s)σ(s)dW (s)

+
N(t)∑

n=1

[f(X(Tn), Tn) + f(X(Tn−), Tn)] .

3. Stock Price Model with Jumps

Let us consider a probability space (Ω,FFF , P) on which we define a standard
Brownian motion (W (t), t ≥ 0), a Poisson process (N (t), t ≥ 0) with intensity λ
and a sequence (Yn, n ≥ 1) of independent, identically distributed random vari-
ables taking values in (−1, +∞). We will assume that the σ-algebras generated
respectively by (W (t), t ≥ 0), (N (t), t ≥ 0) and (Yn, n ≥ 1) are independent.

The objective of this section is to model a financial market in which there is
one riskless asset (with price S0(t) = eµt, at time t) and one risky asset whose
price jumps at the proportions Y1, . . . , Yn, . . . , at some times T1, . . . , Tn, . . . and
which, between any two jumps, follows the Black-Scholes model. Moreover, we
will assume that the Tn’s correspond to the jump times of a Poisson process.

The dynamics of S(t), the price of the risky asset at time t, can now be
described in the following manner. The process (S(t), t ≥ 0) is an adapted,
right-continuous process such that on the time intervals [Tn, Tn+1),

dS(t) = S(t)(µdt + σdW (t)), 0 ≤ t ≤ T (8)

while at t = Tn, the jump of S(t) is given by

∆Sn = S(Tn) − S(Tn−) = S(Tn−)Yn.

Thus
S(Tn) = S(Tn−)(1 + Yn).

By using the standard Itô formula, the solution of (8) on the interval [0, T1) is

S(t) = S(0) exp
(

(µ − σ2

2
)t + σW (t)

)
.

Consequently, the left-hand limit at T1 is given by

S(T1−) = lim
u→T1

S(u) = S(0) exp
(

(µ − σ2

2
)T1 + σW (T1)

)

and
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S(T1) = S(0)(1 + Y1) exp
((

µ − σ2

2

)
T1 + σW (T1)

)
.

Then, for t ∈ [T1, T2),

S(t) = S(T1) exp(µ − σ2

2
)(t − T1) + σ(W (t) − W (T1))

= S(0)(1 + Y1) exp
(

(µ − σ2

2
)t + σW (t)

)
.

Repeating this scheme, we obtain

S(t) = S(0)


 ∏

N(t)

n = 1(1 + Yn)


 exp

(
(µ − σ2

2
)t + σW (t)

)
(9)

with the convention
∏
0

n = 1 = 1. Using equation (3), S(t) can be given in the

following equivalent representations

S(t) = S(0) exp


(µ − σ2

2
)t + σW (t) + log




N(t)∏

n=1

(1 + Yn)







= S(0) exp


(µ − σ2

2
)t + σW (t) +

N(t)∑

n=1

log(1 + Yn)




= S(0) exp
[
(µ − σ2

2
)t + σW (t) +

∫ t

0

log(1 + Ys)dN (s)
]

,

where Yt is obtained from Yn by a piecewise constant and left continuous time
interpolation.

The process (S(t), t ≥ 0) in equation (9) is right-continuous, adapted and
has only finitely many discontinuities on each interval [0, t]. We can also prove
the following.

Theorem 1. For all t ≥ 0, (S(t), t ≥ 0) in equation (9) satisfies:

P a.s. S(t) = S(0) +
∫ t

0

S(s)(µds + σdW (s)) +
N(t)∑

n=1

S(Tn−)Yn (10)

or, in differential form

P a.s. dS(t) = S(t)(µdt + σdW (t)) + S(t−)YtdN (t). (11)

Proof. Let ∆Sn = S(Tn) − S(Tn−) = S(Tn−)Yn. Then (10) can be written in
the following form:

P a.s. S(t) = S(0) +
∫ t

0

S(s) (µds + σdW (s)) +
N(t)∑

n = 1∆Sn, (12)
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We choose the function f(x, s) = log x. Direct calculation shows that

fx =
1
x

, fxx = − 1
x2

and fs = 0

We note that f(x, t) is aC2,1 function if x > 0. Assume that S(t) in (10) is
nonnegative. Applying the Itô formula for jump-diffusion processes (see Lemma
1) to f(x, t) = log x, we obtain

log S(t) = log S(0)(µ − σ2

2
)t + σW (s) +

N(t)∑

n=1

log(1 + Yn).

Thus,

S(t) = S(0)




N(t)∏

n=1

(1 + Yn)


 exp

(
(µ − σ2

2
)t + σW (t)

)
.

Hence, we obtain (9) as asserted.

4. A Fractional Stock Price Model with Jumps

We use the same setting probability spaces as in Sec. 3. The objective of this
section is to construct an approximate model for a financial market in which
there is one riskless asset (with price S0(t) = eµt, at time t) and one risky as-
set whose price jumps in the proportions Y1, . . . , Yn, . . .at some random times
T1, T2, ..., Tn, ...and which, between two jumps, follows the fractional Black-
Scholes model.for a fractional process B(t). These descriptions can be formalized
on the intervals [Tn, Tn+1) by letting:

dS(t) = S(t)(µdt + σdB(t)), 0 ≤ t ≤ T. (13)

At t = Tn, the jump of S(t) is given by

∆Sn = S(Tn) − S(Tn−) = S(Tn−)Yn.

Now, we consider a fractional Black-Scholes model with jumps which is defined
similarly to equation (11) by the following stochastic differential equation

dS(t) = S(t)(µdt + σdB(t)) + S(t−)YtdN (t), (14)
S(t)|t=0 = S(0).

Here B(t) =
∫ t

0
(t − s)αdW (s) where 0 < α < 1

2 .
The corresponding approximate model of (14) is defined for each ε > 0 by

dSε(t) = Sε(t)(µdt + σdBε(t)) + Sε(t−)YtdN (t), (15)
Sε(t)|t=0 = S(0) (same intial conditon as in (14)),

where Bε(t) =
∫ t

0 (t−s+ε)αdW (s). One can prove that Bε(t) is a semimartingale
and Bε(t) converges to B(t) in L2(Ω) when ε → 0. This convergence is uniform
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with respect to t ∈ [0, T ] (see [10, Theorem 2.1]). We need the following Lemma
considered as a consequence of the L2−convergence of Bε(t) to B(t).

Lemma 2. Bε(t) converges to B(t) in Lp(Ω) for any p ≥ 2, uniformly with
respect to t ∈ [0, T ].

Proof. The proof of this Lemma is due to Nguyen Tien Dung [8].

Theorem 2. Suppose that S(0) is a random variable such that E|S(0)|2+δ is
finite for some δ > 0. Then the solution of (15) is given by:

Sε(t) = S(0) exp
(
−1

2
σ2ε2αt + σεαW (t) +

∫ t

0

Hε(s)ds +
∫ t

0

log(1 + Ys)dN (s)
)

,

where 0 < α < 1
2 , and

Hε(t) = µ + ασ

∫ t

0

(t − s + ε)α−1dW (s).

Furthermore, the stochastic process S∗(t) defined by

S∗(t) = S(0) exp
(

µt + σB(t) +
∫ t

0

log(1 + Ys)dN (s)
)

is the limit in L2(Ω) of Sε(t) as ε → 0. This limit is uniform with respect to
t ∈ [0, T ].

Proof. Letting ϕε(t) =
∫ t

0 (t − s + ε)α−1dW (s), and substituting dBε(t) =
αϕε(t)dt + εαdW (t) into equation (eqn15), we obtain

dSε(t) = [µ + ασϕε(t)]Sε(t)dt + σεαSε(t)dW (t) + Sε(t−)YtdN (t), (16)

or,

dSε(t)
Sε(t)

= [µ + ασϕε(t)]dt + σεαdW (t) +
(

Sε(t−)
Sε(t)

)
YtdN (t)

= Hε(t)dt + σεαdW (t) +
(

Sε(t−)
Sε(t)

)
YtdN (t) (17)

where Hε(t) = µ + ασϕε(t). Moreover, we can write equation (eqn16) into
an integral form as

∫ t

0

dSε(t) =
∫ t

0

Hε(s)Sε(s)ds +
∫ t

0

σεαSε(s)dW (s) +
∫ t

0

Sε(s−)YsdN (s).

Thus,

Sε(t) = S(0) +
∫ t

0

Hε(s)Sε(s)ds +
∫ t

0

σεαSε(s)dW (s) +
∫ t

0

Sε(s−)YsdN (s).
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Using the formula (7), Sε(t) can be given in the following equivalent represen-
tations

Sε(t) = S(0) +
∫ t

0

Hε(s)Sε(s)ds +
∫ t

0

σεαSε(s)dW (s) +
N(t)∑

n=1

Sε(Tn−)Yn. (18)

Since ∆Sε(Tn) = Sε(Tn) − Sε(Tn−) = Sε(Tn−)Yn then equation (18) becomes

Sε(t) = S(0) +
∫ t

0

Hε(s)Sε(s)ds +
∫ t

0

σεαSε(s)dW (s) +
N(t)∑

n=1

∆Sε(Tn).

Choosing the function f(x, s) = log x for x = Sε(t) > 0, direct calculation shows
that

fx =
1
x

, fxx = − 1
x2

and fs = 0

An application of the Itô formula for jump-diffusion processes (see Lemma 1)
gives:

logSε(t) = log S(0) +
∫ t

0

(
0 +

(
1

Sε(s)

)
· (Hε(s)Sε(s))

)
ds

+
1
2

∫ t

0

(σεα)2S2
ε (s)

(
− 1

Sε(s)

)2

ds

+
∫ t

0

(
1

Sε(s)

)
(σεα)Sε(s)dW (s)

+
N(t)∑

n=1

[log(Sε(Tn−) + ∆Sε(Tn)) − log(Sε(Tn−))]

= log S(0) +
∫ t

0

Hε(s)ds − 1
2

∫ t

0

(σεα)2ds +
∫ t

0

σεαdW (s)

+
N(t)∑

n=1

[
log

(
Sε(Tn−)(1 + Yn)

Sε(Tn−)

)]

= log S(0) +
∫ t

0

(Hε(s)ds + σεαdW (s)) − 1
2

∫ t

0

(σεα)2ds (19)

+
N(t)∑

n=1

log(1 + Yn)

Using formulae (7) and (17), equation (19) can be given in the following equiv-
alent representations
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log Sε(t) = log S(0) +
∫ t

0

(Hε(s)ds + σεαdW (s)) − 1
2

∫ t

0

(σεα)2ds

+
∫ t

0

log(1 + Yn)dN (s)

= log S(0) +
(∫ t

0

dSε(s)
Sε(s)

−
∫ t

0

(
Sε(s−)
Sε(s)

)
YsdN (s)

)
− 1

2
σ2ε2αt

+
∫ t

0

log(1 + Yn)dN (s)

= log S(0) +
∫ t

0

dSε(s)
Sε(s)

− 1
2
σ2ε2αt +

∫ t

0

log(1 + Yn)dN (s)

−
∫ t

0

(
Sε(s−)
Sε(s)

)
YsdN (s).

Here Yt is obtained from Yn by a piecewise constant and left continuous time
interpolation. Thus

∫ t

0

dSε(s)
Sε(s)

= log
Sε(t)
S(0)

+
1
2
σ2ε2αt−

∫ t

0

log(1+Yn)dN (s)+
∫ t

0

(
Sε(s−)
Sε(s)

)
YsdN (s).

(20)
Equating (20) and (17), we get

log
Sε(t)
S(0)

+
1
2
σ2ε2αt −

∫ t

0

log(1 + Yn)dN (s) +
∫ t

0

(
Sε(s−)
Sε(s)

)
YsdN (s)

=
∫ t

0

Hε(s)ds + σεαW (t) +
∫ t

0

(
Sε(s−)
Sε(s)

)
YsdN (s).

Hence, the solution of (15) is

Sε(t) = S(0) exp
(
−1

2
(σεα)2t + σεαW (t) +

∫ t

0

Hε(s)ds +
∫ t

0

log(1 + Yn)dN (s)
)

.

(21)
We note that,

∫ t

0

Hε(s)ds = µ + ασ

∫ t

0

ϕε(s)ds.

By application of the stochastic Theorem of Fubini, we get
∫ t

0

ϕε(s)ds =
1
α

(Bε(t) − εαW (t)) .

Therefore ∫ t

0

Hε(s)ds = µt + σBε(t) − σεαW (t).
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Substituting the value of
∫ t

0
Hε(s)ds into equation (21), we get

Sε(t) = S(0) exp
(

µt − 1
2
(σεα)2t + σBε(t) +

∫ t

0

log(1 + Yn)dN (s)
)

.

We note that 1
2(σεα)2t → 0 as ε → 0 and Bε(t) converges uniformly to B(t) in

L2(Ω) when ε → 0. This motivates us to consider the process S∗(t) defined by

S∗(t) = S(0) exp
(

µt + σB(t) +
∫ t

0

log(1 + Yn)dN (s)
)

.

We try to show that S∗(t) is the limit of Sε(t) in L2(Ω) as ε → 0. We observe
that

Sε(t) − S∗(t) =S(0) exp
(

µt − 1
2
(σεα)2t + σBε(t) +

∫ t

0

log(1 + Yn)dN (s)
)

− S(0) exp
(

µt + σB(t) +
∫ t

0

log(1 + Yn)dN (s)
)

= S(0) exp
(

µt + σB(t) +
∫ t

0

log(1 + Yn)dN (s)
)

[
exp

(
−1

2
(σεα)2t + σ(Bε(t) − B(t))

)
− 1

]

= S(0) exp (µt + σB(t)) · exp
(∫ t

0

log(1 + Yn)dN (s)
)

[
exp

(
−1

2
(σεα)2t + σ(Bε(t) − B(t))

)
− 1

]
.

Put p = 1 + δ
2and q > 1 such that 1

p + 1
q = 1. It follows from Holder’s inequality

that

||Sε(t) − S∗(t)||2 ≤ ||S(0)||2p|| exp (µt + σB(t)) · exp
(∫ t

0

log(1 + Yn)dN (s)
)
×

[
exp

(
−1

2
(σεα)2t + σ(Bε(t) − B(t))

)
− 1

]
||2q

≤ ||S(0)||2+δ|| exp (µt + σB(t)) exp
(∫ t

0

log(1 + Yn)dN (s)
)
||4q×

||
[
exp

(
−

1
2
(σεα)2t + σ(Bε(t) − B(t))

)
− 1

]
||4q (22)

In order to calculate the norm ||Sε(t) − S∗(t)||2, we firstly note that

|| exp (µt + σB(t)) exp
(∫ t

0

log(1 + Yn)dN (s)
)
||4q

≤ || exp (µt + σB(t)) ||8q|| exp
(∫ t

0

log(1 + Yn)dN (s)
)
||8q < ∞.

(23)
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To see this we note that, for each t, Bt is a Gaussian random variable with zero
mean and variance γ2

t for some real numbers γt. Then

|| exp (µt + σB(t)) ||8q = exp(µt)[Ee8qσB(t)]
1
8q = exp(µt)e4qσ2γ2(t) < ∞.

Moreover

∥∥∥∥exp
(∫ t

0

log(1 + Yn)dN (s)
)∥∥∥∥

8q

=

∥∥∥∥∥∥
exp




N(t)∑

n=1

log(1 + Yn)




∥∥∥∥∥∥
8q

=

∥∥∥∥∥∥

N(t)∑

n=1

(1 + Yn)

∥∥∥∥∥∥
8q

≤ K,

where K is a constant. This is due to the fact that there is a finite number of
jumps in the finite interval [0, T ].
Finally, we compute the last term on the right hand side of (22). It follows from
the relation eA − 1 = A + o(A) that we have

∥∥∥∥
[
exp

(
−1

2
(σεα)2t + σ(Bε(t) − B(t))

)
− 1

]∥∥∥∥
4q

≤
∥∥∥∥−

1
2
(σεα)2t + σ(Bε(t) − B(t))

∥∥∥∥
4q

+
∥∥∥∥o(−1

2
(σεα)2t + σ(Bε(t) − B(t)))

∥∥∥∥
4q

≤ 1
2
(σεα)2t + σ ‖Bε(t) − B(t)‖4q + ||o(−1

2
(σεα)2t + σ(Bε(t) − B(t)))||4q

By application of Lemma 2, we have ||Bε(t)− B(t)||4q → 0 as ε → 0 (uniformly
on t ∈ [0, T ]). Hence

∥∥∥∥
[
exp

(
−1

2
(σεα)2t + σ(Bε(t) − B(t))

)
− 1

]∥∥∥∥
4q

≤ 1
2
(σεα)2T + σ||Bε(t) − B(t)||4q+

∥∥∥∥o(−1
2
(σεα)2t + σ(Bε(t) − B(t)))

∥∥∥∥
4q

The right hand side of the above inequality does not depend on t and approaches
zero when ε → 0. Therefore, one can see from (22) and (23), that Sε(t) → S∗(t)
in L2(Ω) as ε → 0 and the convergence is uniform with respect to t.

5. Simulation Examples

Let us consider the Thai stock market. Figure 1 shows the daily prices of a
data set consisting of 150 open -prices of the Thai Petrochemical Industry (TPI)
between June 9, 2004 and January 7, 2005. The empirical data for these stock
prices were obtained from http://finance.yahoo.com.
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Fig. 1. Price behavior of TPI, between June 4, 2004 and January 7, 2005

Fig. 2. Price behavior of TPI, between June 4, 2004 and January 7, 2005,

compared with a scenario simulated from a Black-Scholes model with jumps

(solid line:= empirical data, dashed line:= simulated by S(t)=

S(0) exp((µ−σ2
2 )t+σW (t)+

N(t)∑
n=1

(1+Yn))), ARPE(2) = 23.69%, and variance = 0.02656)
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Figure 2 shows the empirical data of TPI open-price as compared to the
price that was simulated by a Black-Scholes pricing model with jump. In the
simulation process, we use the algorithm that appeared the paper of Cyganowski,
Grunce and Kloeden [3]. The simulated model is S(t) = S(0) exp((µ − σ2

2
)t +

σW (t) +
N(t)∑
n=1

(1 + Yn). The model parameters µ = −0.0000725, σ = 0.3025 and

parameter for jumps as µj = 0.00007624, σj = 0.0003679, λ = 55.46, γ = 1 are
fixed. For comparative purposes, we compute the Average Relative Percentage

Error( ARPE). By definition, ARPE= (1/N )
N∑

k=1

|Xk−Yk|
Xk

.100, where N is the

number of price, X = (Xk)k≥1 is the market prices and Y = (Yk)k≥1 is the
model prices. We worked out 500 trails and computed ARPE. We denote the
ARPE of Figure 2 and and Figure 3 by ARPE(2) and ARPE(3) respectively.

Figure 3 shows the empirical data of TPI open-price as compared to the price
that was simulated by a fractional Black-Scholes pricing model with jumps. The

simulated model is S∈(t) = S(0) exp((µ − 1
2
((σεα)2)t + σB∈(t) +

N(t)∑
n=1

(1 + Yn)).

The value of µ, σ and the parameters for jumps are the same as in Figure 2. For
the remaining data, we choose H = 0.50001, ε = 0.000001.

Fig. 3. Price behavior of TPI, between June 4, 2004 and January 7, 2005,

compared with a scenario simulated from a fractional Black Scholes model

with jumps (solid line := empirical data, dashed line := simulated by

Sε(t)=S(0) exp((µ− 1
2 ((σεα)2)t+σB∈(t)+

N(t)∑
n=1

(1+Yn)).

ARPE(3) = 19.64%, and variance = 0.01546)
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By comparing ARPE and varience of Figure 2 and 3, one can see that in
case of TPI, the sample path from a fractional Black-Scholes pricing model with
jumps gives a better fit with the data than Black-Scholes pricing model with
jumps.
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