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CHAPTER I

INTRODUCTION

Mathematical finance is the important discipline of applied mathematics

concerned with financial markets. It appeared for the first time in 1900 with the

contribution by Louis Bachelier on speculation in markets. More than one century

has passed since then and many substantial achievements on mathematical finance

have been achieved, among them there are some important turning points such as

the discovery of the Black-Scholes Theory of European Options in 1973, Arbitrage

Pricing Theory, Hedging Theory and Term Structures Theory for interest rates

and credit spreads. These achievements play a crucial role in giving decisions

for investing in financial markets such as stock markets, bond markets, currency

markets, derivatives markets, etc. Strong and continuous requirements of real

markets are motivations of mathematical research for establishing suitable financial

models and methods that could be put to practice in more and more efficient ways.

Filtering problems involve the estimation of some quantities that cannot

be observed directly (the signal process or the state process) throughout other

quantities that depend on them and can be observed directly (the observation

process).

In financial modeling it is sometimes the case that not all quantities, which

determine the dynamics of security prices, can be fully observed. Some of the

factors that characterize the evolution of the market are hidden. However, these

unobserved factors may be essential to reflect in a market model the type of dy-

namics that one empirically observes. This leads naturally to filtering methods.
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These methods determine the distribution and allow then to compute the expecta-

tion of quantities that are dependent on unobserved factors, for instance, derivative

prices.

On the other hand, when specifying a financial market model, one has also

to specify the model coefficients. The latter may however be only partially known

or depend on stochastic factors that in turn may not be observable. When solving

problems related to financial markets, like portfolio optimization or derivative

pricing and hedging, it is therefore appropriate to exploit all information coming

from the market itself to continuously update the knowledge of the not fully known

coefficients or parameters in the model, and this is where stochastic filtering proves

itself as a very useful technique. In fact, in stochastic filtering, which can be viewed

as a dynamic extension of Bayesian statistics, all not fully known quantities are

considered as random variables or stochastic processes and their distribution is

continuously updated on the basis of currently available information.

The main actors in a financial market are the various assets that may

be classified into two main categories: primary assets (underlying assets) and

derivative assets, where the prices of the latter are “derived” from those of the

primary assets and can be expressed as expectations under a so-called martingale

measure. In a complete market there exists only one martingale measure and so

all prices are fully specified within the model. If however the market is incomplete,

and this corresponds to essentially all practical situations, then there exist more

martingale measures and so, in order to perform the pricing of derivatives that are

not already traded on the market, one has first to infer the prevailing martingale

measure or, equivalently, the so-called market price of risk. This market price of

risk cannot be directly observed on the market so that, again, filtering techniques

may be used to continuously update its knowledge.
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The prices of the primary assets as well as those of derivative assets that

are liquidly traded constitute the main information available on a given market

and thus also the basic ingredient of filtering. In this context, the fact that the

prices of the derivative assets, also of those that are liquidly traded, are specified

as expectations under a martingale measure become a major problem since the

actual observations take place under the real world probability measure, under

which the dynamics of the observable in a stochastic dynamic filtering model have

thus to be specified.

The estimation of some financial factors that cannot be observed directly

(for instance the volatility or parameters of some financial models) has to based on

some direct observation process such as stock price St depending on time t, 0 ≤
t ≤ T . But in reality, the observation can be made only at discrete times tn, n =

0, 1, 2, ... so the observation process is a stochastic process of discrete times. More

general, the observation can be made at random times T0(ω), T1(ω), ..., Tn(ω), ...

So it is natural to use a point process to express such an observation. There are

three ways to introduce a point process:

- by a sequence of random variables,

- by a discrete random measure,

- and by a counting process.

The first major part of this thesis is reserved to the study of filtering prob-

lems based on observation given by a point process introduced by the third way

mentioned above.

One has realized also that various evolutions of many financial factors can

be perturbed not only by white noise as Brownian motion Wt, but also by a

fractional process such as fractional Brownian motion WH
t , where H is the Hurst

index, 0 ≤ H ≤ 1.
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Thus, it is very natural to consider fractional filtering problems, where

either the signal process or observation process or both can be perturbed by frac-

tional Brownian motion. Many authors have made some attempts to solve those

problems (refer to Decreusefond, Oksendal, etc) but it seems that their approaches

are too complicated to be applied to the practice of financial markets.

Thus, another major part of this thesis is the study of fractional filtering

problems from an approximation point-of-view that can be more easily applied to

finance than other academic approaches.



CHAPTER II

INTRODUCTION TO STOCHASTIC

FILTERING THEORY

In this chapter, we introduce the background of stochastic filtering theory.

Most of these results can be found in Chiganski (2005).

2.1 Problems Setting and Definition

2.1.1 Problems Setting

Consider a filtered probability space (Ω,F , (Ft), P ). We shall consider two

processes:

1. A signal process {Xt}t≥0, which is not directly observable

2. An observation process {Yt}t≥0, whose value depend on the signal process

and can be directly observed.

The signal process is described by a semimartingale

Xt = X0 +

∫ t

0

Hsds + Wt. (2.1.1)

and the observation process is given by

Yt =

∫ t

0

hsds + Vt. (2.1.2)

where Ht is some stochastic process, ht is a process such that ht = h(Xt),

E

∫ t

0

h2
sds < ∞ and Wt, Vt are independent Brownian motions. Denote by FY

t the
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σ-algebra generated by all random variables (Yu, u ≤ t) : FY
t = σ(Yu, 0 ≤ u ≤ t).

The filtering π(Xt) of Xt based on information given by FY
t is defined by

π(Xt) := E[Xt|FY
t ], (2.1.3)

More general, the filter can be defined via a function f ∈ C2 by

π(f(Xt)) = E[f(Xt)|FY
t ]. (2.1.4)

The problem now is how to find the filter π(Xt) or π(f(Xt)). It is usually

found as a solution of a stochastic differential equation that is called filtering

equation.

2.2 Girsanov Theorem

Theorem 2.2.1. (Girsanov Theorem). Let Wt be Brownian motion process and

Xt be an Ft-adapted process, defined on (Ω,F , {Ft}, P ) and satisfying

∫ t

0

X2
t dt < ∞ a.s. (2.2.1)

and define

Zt = exp(

∫ t

0

XsdWs − 1

2

∫ t

0

X2
s ds) (2.2.2)

Assume that EZt = 1 holds for all t and define the probability measure Q by

dQ

dP
(ω)

∣∣∣∣
Ft

= Zt(ω) (2.2.3)

Then

Vt = Wt −
∫ t

0

Xsds (2.2.4)

is a Brownian motion process with respect to Ft under Q.

Proof : Clearly Vt has continuous paths and V0 = 0. Thus it is left to verify

EQ[exp{iλ(Vt − Vs)}|Fs] = exp{−1

2
λ2(t− s)}, s ≤ t (2.2.5)



7

Since
dQ

dP

∣∣∣∣
Ft

= Zt is the restriction of Randon-Nykodym derivative on Ft ⊂ F ,

then

EQ[exp{iλ(Vt − Vs)}|Fs] =
EP [exp{iλ(Vt − Vs)}Zt|Fs]

EP [Zt|Fs]

= exp{−iλVs}EP [exp{iλVt}Zt|Fs]

EP [Zt|Fs]

=
EP [exp{iλVt}Zt|Fs]

exp{iλVs}EP [Zt|Fs]

By the Ito formula Zt satisfies

dZt = ZtXtdWt (2.2.6)

or

Zt = Zs +

∫ t

s

ZuXudWu (2.2.7)

It follows from the martingale property of the Itô integral, that the process Zt is

a martingale, that is

EP [Zt|Fs] = Zs (2.2.8)

The Itô formula applied to the process Yt := exp{iλVt}Zt yields

dYt = −λ2

2
Ytdt + (iλYt + YtXt)dWt (2.2.9)

which implies

Yt = Ys −
∫ t

s

λ2

2
Yudu +

∫ t

s

Yu(iλ + Xu)dWu (2.2.10)

and in turn

EP [Yt|Fs] = EP [Ys|Fs]−
∫ t

s

λ2

2
EP [Yu|Fs]du (2.2.11)

where the martingale property of the stochastic integral has been used. This linear

equation is explicitly solved for E[Yt|Fs]

EP [Yt|Fs] = Ys exp{−1

2
λ2(t− s)} (2.2.12)
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Hence

EQ[exp{iλ(Vt − Vs)}|Fs] =
exp{iλVs}Zs exp{−1

2
λ2(t− s)}

exp{iλVs}Zs

= exp{−1

2
λ2(t− s)}

This proves that the process Vt is a Brownian motion process with respect to Ft

under Q.

2.3 Innovation Processes

Definition 2.3.2. (Innovation process).

mt = Yt −
∫ t

0

π(hs)ds (2.3.1)

is called an innovation process of the observation process Yt, where π(hs) =

E[hs|FY
s ].

Theorem 2.3.3. mt is a Brownian motion with respect to FY
t .

Proof : Substituting (2.1.2) into (2.3.1), we have

mt =

∫ t

0

(hs − π(hs))ds + Vt. (2.3.2)

For any 0 ≤ s ≤ t

E[mt|FY
s ]−ms = E[

∫ t

s

(hu − π(hu))du + (Vt − Vs)|FY
s ]

= E[

∫ t

s

(hu − π(hu))du|FY
s ] + E[Vt − Vs|FY

s ]

= E[

∫ t

s

{E[hu|FY
u ]− π(hu)}du|FY

s ] + E[E[Vt − Vs|Fs]|FY
s ]

= 0

by properties of conditional expectations and properties of Brownian motion

process Vt. Therefore, mt is a martingale with respect to FY
t . And the quadratic
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variation

〈m,m〉t = 〈V, V 〉t = t. (2.3.3)

By virtue of a Levy’s Theorem on characterization of Brownian motions, mt is a

Brownian motion with respect to FY
t .

Theorem 2.3.4. Every martingale Mt with respect to the filtration {FY
t } admits

a representation of the form

Mt = M0 +

∫ t

0

Ksdms (2.3.4)

where Kt is FY
t -measurable and satisfies

∫ t

0

K2
s ds < ∞ a.s.

Proof : Set

Zt = exp

(
−

∫ t

0

π(hs)dms − 1

2

∫ t

0

π2(hs)ds

)
(2.3.5)

is FY
t -martingale. According to the Girsanov Theorem, the process

Yt = mt +

∫ t

0

π(hs)ds (2.3.6)

is a Brownian motion with respect to FY
t under the new probability measure Q

defined by

dQ

dP

∣∣∣∣
FY

t

= Zt. (2.3.7)

Next, we define

Λt := Z−1
t

= exp

( ∫ t

0

π(hs)dms +
1

2

∫ t

0

π2(hs)ds

)

= exp

( ∫ t

0

π(hs)dYs − 1

2

∫ t

0

π2(hs)ds

)

and notice the “likelihood ratio”

dQ

dP

∣∣∣∣
FY

t

= Zt,
dP

dQ

∣∣∣∣
FY

t

= Λt. (2.3.8)
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And the processes Zt and Λt satisfy the equations

Zt = 1−
∫ t

0

Zsπ(hs)dms

Λt = 1 +

∫ t

0

Λsπ(hs)dYs

Because of Bayes formula and Mt, Zt are FY
t -martingales. We found that, for any

s < t

EQ[ΛtMt|FY
s ] =

EP [ΛtMtZt|FY
s ]

EP [Zt|FY
s ]

= ΛsMs, (2.3.9)

that is ΛtMt is FY
t -martingale under probability Q. Then there exists the process

Ψt that

ΛtMt = Λ0M0 +

∫ t

0

ΨsdYs

= M0 +

∫ t

0

Ψs(dms + π(hs)ds)

Now from integration by parts formula, we obtain

Mt = (ΛtMt)Zt

= Λ0M0Z0 +

∫ t

0

ΛsMsdZs +

∫ t

0

Zsd(ΛsMs) + 〈ΛM, Z〉t

= M0 −
∫ t

0

Msπ(hs)dms +

∫ t

0

ZsΨs(dms + π(hs)ds) + 〈ΛM, Z〉t

= M0 +

∫ t

0

(ZsΨs −Msπ(hs))dms

= M0 +

∫ t

0

Ksdms

where Kt = ZtΨt −Mtπ(ht). This proves the theorem.

2.4 Fujisaki-Kallianpur-Kunita Theorem

Theorem 2.4.5. Mt = E[X0|FY
t ] − π(X0) + E[

∫ t

0

Hsds|FY
t ] −

∫ t

0

π(Hs)ds +

E[Wt|FY
t ] is a martingale with respect to FY

t .
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Proof : For any 0 ≤ s ≤ t, by the rules of conditional expectation, we have

E[E[X0|FY
t ]− π(X0)|FY

s ] = E[X0|FY
s ]− π(X0). (2.4.1)

And

E [E[

∫ t

0

Hudu|FY
t ]−

∫ t

0

π(Hu)du|FY
s ]

=

∫ t

0

E[Hu|FY
s ]du−

∫ t

0

E[π(Hu)|FY
s ]du

= E[

∫ s

0

Hudu|FY
s ]−

∫ s

0

π(Hu)du +

∫ t

s

E[Hu|FY
s ]du−

∫ t

s

E[π(Hu)|FY
s ]du

= E[

∫ s

0

Hudu|FY
s ]−

∫ s

0

π(Hu)du. (2.4.2)

Since Wt is a Brownian motion process, so it is a Ft-martingale then

E[E[Wt|FY
t ]|FY

s ] = E[Wt|FY
s ] = E[E[Wt|Fs]|FY

s ] = E[Ws|FY
s ]. (2.4.3)

Combining equation (2.4.1)-(2.4.3) and definition of Mt yields

E[Mt|FY
s ] = E[X0|FY

s ]− π(X0) + E[

∫ s

0

Hudu|FY
s ]−

∫ s

0

π(Hu)du + E[Ws|FY
s ]

= Ms. (2.4.4)

This shows that Mt is a FY
t -martingale.

Theorem 2.4.6. (Fujisaki-Kallianpur-Kunita Theorem). The filter π(Xt) satis-

fies the Fujisaki-Kallianpur-Kunita equation

π(Xt) = π(X0) +

∫ t

0

π(Hs)ds +

∫ t

0

{π(Xshs)− π(Xs)π(hs)}dms (2.4.5)

where mt is the innovation process defined in (2.3.1)

Proof : By Theorem 2.3.4 and Theorem 2.4.5, there exists a process Kt such that

Mt =

∫ t

0

Ksdms.
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We should show that

Ks = π(Xshs)− π(Xs)π(hs), (2.4.6)

which is equivalent to

∫ t

0

E[λs(Ks − π(Xshs) + π(Xs)π(hs))]ds = 0, (2.4.7)

for any bounded FY
t -adapted λt.

Put zt =
∫ t

0
λsdms and ξt =

∫ t

0
Ksdms, then

∫ t

0

E[λsKs]ds = E[ztξt]

On the other hand,

E[ztξt] = E[zt(π(Xt)− π(X0)−
∫ t

0

π(Hs)ds)] = E[ztXt −
∫ t

0

zsHsds],

since E[ztπ(X0)] = E[π(X0)]E[zt|FY
0 ] = 0, E[ztπ(Xt)] = E[zt]E[Xt|FY

t ] =

E[ztXt] and

E[zt

∫ t

0

π(Hs)ds] = E[

∫ t

0

E[zt|FY
s ]π(Hs)ds]

=

∫ t

0

zsπ(Hs)ds

=

∫ t

0

E[zsHs|FY
s ]ds

= E[

∫ t

0

zsHsds].

Using the definition of the innovation process mt (from (2.3.1) and (2.3.2)) we see

that

zt =

∫ t

0

λsdVs +

∫ t

0

λs{hs − π(hs)}ds. (2.4.8)

Then

E[ztξt] = E[Xt

∫ t

0

λsdVs −
∫ t

0

(

∫ s

0

λudVu)Huds] + E[Xt

∫ t

0

λs{hs − π(hs)}ds

−
∫ t

0

(

∫ s

0

λu{hu − π(hu)}du)Hsds]. (2.4.9)
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We claim that the first expectation vanishes: indeed

E[X0

∫ t

0

λsdVs] = E[X0]E[

∫ t

0

λsdVs|F0] = 0

and

E[

∫ t

0

(

∫ s

0

λudVu)Hsds] = E[

∫ t

0

E[

∫ t

0

λudVu|Fs]Hsds]

= E[

∫ t

0

E[Hs

∫ t

0

λudVu|Fs]ds]

= E[

∫ t

0

λudVu

∫ t

0

Hsds]

and hence

E[Xt

∫ t

0

λsdVs −
∫ t

0

(

∫ s

0

λudVu)Hsds] = E[

∫ t

0

λsdVs(Xt −X0 −
∫ t

0

Hsds)]

= E[

∫ t

0

λsdVsWt] = 0,

where the latter equality holds since the Brownian motion process Wt is indepen-

dent of the Brownian motion process Vt. Next consider

E[Xt

∫ t

0

λs{hs − π(hs)}ds] = E[

∫ t

0

λs{Xs(hs − π(hs))}ds]

+E[

∫ t

0

λs(Xt −Xs){hs − π(hs)}ds]

= E[

∫ t

0

λs{π(Xshs)− π(Xs)π(hs)}ds]

+E[

∫ t

0

λs(Zt − Zs){hs − π(hs)}ds]

+E[

∫ t

0

λs

∫ t

s

Hudu{hs − π(hs)}ds]

= E[

∫ t

0

λs{π(Xshs)− π(Xs)π(hs)}ds]

+E[

∫ t

0

Hs(

∫ s

0

λu{hs − π(hs)}du)ds].

Assembling all parts together we obtain

E[ztξt] =

∫ t

0

E[λs{π(Xshs)− π(Xs)π(hs)}ds]

This completes the proof.
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2.5 General Filtering Equation

We consider a general model as follows:

Signal process:

Xt = X0 +

∫ t

0

Hsds + Zt. (2.5.1)

Observation process:

Yt =

∫ t

0

hsds + BWt. (2.5.2)

where E

∫ t

0

h2
sds < ∞, ht = h(Xt), B > 0 is a constant and Zt is a Ft martingale

independent of the Brownian motion process Wt.

Innovation process:

mt = B−1(Yt −
∫ t

0

π(hs)ds) (2.5.3)

We can show that mt is a Brownian motion process with respect to FY
t as

in the proof of Theorem (2.3.3).

Theorem 2.5.7. Mt = E[X0|FY
t ] − π(X0) + E[

∫ t

0

Hsds|FY
t ] −

∫ t

0

π(Hs)ds +

E[Zt|FY
t ] is a martingale with respect to FY

t

Proof : For any 0 ≤ s ≤ t, by a property of conditional expectation, we have

E[E[X0|FY
t ]− π(X0)|FY

s ] = E[X0|FY
s ]− π(X0), (2.5.4)

and

E [E[

∫ t

0

Hudu|FY
t ]−

∫ t

0

π(Hu)du|FY
s ]

=

∫ t

0

E[Hu|FY
s ]du−

∫ t

0

E[π(Hu)|FY
s ]du

= E[

∫ s

0

Hudu|FY
s ]−

∫ s

0

π(Hu)du +

∫ t

s

E[Hu|FY
s ]du−

∫ t

s

E[π(Hu)|FY
s ]du

= E[

∫ s

0

Hudu|FY
s ]−

∫ s

0

π(Hu)du. (2.5.5)
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Since Zt is a Ft-martingale then

E[E[Zt|FY
t ]|FY

s ] = E[Zt|FY
s ] = E[E[Zt|Fs]|FY

s ] = E[Zs|FY
s ]. (2.5.6)

Combining equation (2.5.4)-(2.5.6) and definition of Mt yields

E[Mt|FY
s ] = E[X0|FY

s ]− π(X0) + E[

∫ s

0

Hudu|FY
s ]−

∫ s

0

π(Hu)du + E[Zs|FY
s ]

= Ms. (2.5.7)

This shows that Mt is a FY
t -martingale.

2.5.1 Fujisaki-Kallianpur-Kunita Filtering Equation

Theorem 2.5.8. (Fujisaki-Kallianpur-Kunita Filtering Equation). The filter

π(Xt) satisfies the Fujisaki-Kallianpur-Kunita equation

π(Xt) = π(X0) +

∫ t

0

π(Hs)ds +

∫ t

0

B−1{π(Xshs)− π(Xs)π(hs)}dms (2.5.8)

where mt is the innovation process defined in (2.3.1)

Proof : By Theorem 2.3.4 and Theorem 2.5.7, there exists some process Kt such

that

Mt =

∫ t

0

Ksdms.

We should show that

Ks =
π(Xshs)− π(Xs)π(hs)

B
, (2.5.9)

which is equivalent to

∫ t

0

E[λs(Ks − π(Xshs)− π(Xs)π(hs)

B
)]ds = 0, (2.5.10)

for any bounded FY
t -adapted λt.

Let zt =
∫ t

0
λsdms and ξt =

∫ t

0
Ksdms, then

∫ t

0

E[λsKs]ds = E[ztξt]
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On the other hand,

E[ztξt] = E[zt(π(Xt)− π(X0)−
∫ t

0

π(Hs)ds)] = E[ztXt −
∫ t

0

zsHsds],

since E[ztπ(X0)] = E[π(X0)]E[zt|FY
0 ] = 0, E[ztπ(Xt)] = E[zt]E[Xt|FY

t ] =

E[ztXt] and

E[zt

∫ t

0

π(Hs)ds] = E[

∫ t

0

E[zt|FY
s ]π(Hs)ds]

=

∫ t

0

zsπ(Hs)ds

=

∫ t

0

E[zsHs|FY
s ]ds

= E[

∫ t

0

zsHsds].

It follows from the definition of mt that

zt =

∫ t

0

λsdWs +

∫ t

0

λs
hs − π(hs)

B
ds, (2.5.11)

and

E[ztξt] = E[Xt

∫ t

0

λsdWs −
∫ t

0

(

∫ s

0

λudWu)Huds] + E[Xt

∫ t

0

λs
hs − π(hs)

B
ds

−
∫ t

0

(

∫ s

0

λu
hu − π(hu)

B
du)Hsds]. (2.5.12)

We claim that the first expectation vanishes: indeed

E[X0

∫ t

0

λsdWs] = E[X0]E[

∫ t

0

λsdWs|F0] = 0

and

E[

∫ t

0

(

∫ s

0

λudWu)Hsds] = E[

∫ t

0

E[

∫ t

0

λudWu|Fs]Hsds]

= E[

∫ t

0

E[Hs

∫ t

0

λudWu|Fs]ds]

= E[

∫ t

0

λudWu

∫ t

0

Hsds]
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and hence

E[Xt

∫ t

0

λsdWs −
∫ t

0

(

∫ s

0

λudWu)Hsds] = E[

∫ t

0

λsdWs(Xt −X0 −
∫ t

0

Hsds)]

= E[

∫ t

0

λsdWsZt] = 0,

where the latter equality holds since the martingale Zt is independent of Wt. Next

consider

E[Xt

∫ t

0

λs
hs − π(hs)

B
ds] = E[

∫ t

0

λs
Xs(hs − π(hs))

B
ds]

+E[

∫ t

0

λs(Xt −Xs)
hs − π(hs)

B
ds]

= E[

∫ t

0

λs
π(Xshs)− π(Xs)π(hs)

B
ds]

+E[

∫ t

0

λs(Zt − Zs)
hs − π(hs)

B
ds]

+E[

∫ t

0

λs

∫ t

s

Hudu
hs − π(hs)

B
ds]

= E[

∫ t

0

λs
π(Xshs)− π(Xs)π(hs)

B
ds]

+E[

∫ t

0

Hs(

∫ s

0

λu
hs − π(hs)

B
du)ds].

Assembling all parts together we obtain

E[ztξt] =

∫ t

0

E[λs
π(Xshs)− π(Xs)π(hs)

B
ds]

The proof is thus complete.

2.6 Kushner Equation

The Fujisaki-Kallianpur-Kunita equation takes a somewhat more concrete

form in the case when (Xt, Yt) are diffusion process, namely the solution of

dXt = a(Xt)dt + b(Xt)dWt X0 = ξ

dYt = A(Xt)dt + dVt Y0 = 0
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where ξ is a random variable with probability density p0(x), independent of Brown-

ian motion process Wt and Vt.

2.6.1 Kushner Theorem

Theorem 2.6.9. Assume there is an FY
t -adapted random process qt(x), satisfying

the Kushner-Stratonovich stochastic partial integral-differential equation

qt(x) = p0(x) +

∫ t

0

(L∗qs)(x)ds +

∫ t

0

qs(x)(A(x)− πs(A))dms (2.6.1)

where

(L∗f)(x) = − ∂

∂x
(a(x)f(x)) +

1

2

∂2

∂x2
(b2(x)f(x)) (2.6.2)

and

πt(A) =

∫

R
A(x)qt(x)dx (2.6.3)

Then qt(x) is a version of the conditional density of Xt given FY
t , i.e. for any

bounded function f

E[f(Xt)|FY
t ] =

∫

R
f(x)qt(x)dx (2.6.4)

Proof : An application of the Itô formula to the function f(Xt) gives us:

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2

= [f ′(Xt)a(Xt) +
1

2
f ′′(Xt)b

2(Xt)]dt + f ′(Xt)b(Xt)dWt,

or equivalently,

f(Xt) = f(X0) +

∫ t

0

[a(Xs)
∂

∂Xs

f(Xs) +
1

2
b2(Xs)

∂2

∂X2
s

f(Xs)]ds

+

∫ t

0

b(Xs)f
′(Xs)dWs

= f(X0) +

∫ t

0

(Lf)(Xs)ds +

∫ t

0

b(Xs)f
′(Xs)dWs,
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where

(Lf)(x) = a(x)
∂

∂x
f(x) +

1

2
b2(x)

∂2

∂x2
f(x). (2.6.5)

Next, consider

π0(f) =

∫

R
f(x)q0(x)dx

=

∫

R
f(x)p0(x)dx

and

πs(Lf) =

∫

R
(Lf)(x)qs(x)dx

=

∫

R

(
a(x)

∂

∂x
f(x) +

b2(x)

2

∂2

∂x2
f(x)

)
qs(x)dx

=

∫

R

(
− ∂

∂x
a(x)qs(x) +

1

2

∂2

∂x2
b2(x)qs(x)

)
f(x)dx

=

∫

R
(L∗qs)(x)f(x)dx

and

πs(fA)− πs(f)πs(A) =

∫

R
f(x)A(x)qs(x)dx− πs(A)

∫

R
f(x)qs(x)dx

=

∫

R
f(x)qs(x)[A(x)− πs(A)]dx

Then the right hand side of Fujisaki-Kallianpur-Kunita equation reads

πt(f) = π0(f) +

∫ t

0

π(Lf)ds +

∫ t

0

{πs(fA)− πs(f)πs(A)}dms

=

∫

R
f(x)

(
p0(x) +

∫ t

0

(L∗qs)(x)ds +

∫ t

0

qs(x)(A(x)− πs(A))dms

)
dx

=

∫

R
f(x)qt(x)dx.

This proves the theorem.
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2.7 Zakai Equation

2.7.1 Quasi-filtering

In this section we consider a transformation of the probability P into an-

other probability Q and denote by Lt the restriction to FY
t of the Radon-Nykodym

derivative
dP

dQ
:

dP

dQ

∣∣∣∣
FY

t

= Lt (2.7.1)

and define a stochastic process σ(Xt) as follows

σ(Xt) := EQ[XtLt|FY
t ], (2.7.2)

where EQ is denoted the expectation under the new probability Q. This process

is called from now on the quasi-filter of Xt based on the information FY
t given by

the observation Yt. Now the relation between the filter π(Xt) and the quasi-filter

σ(Xt) can be expressed as

π(Xt) =
σ(Xt)

σ(1t)
. (2.7.3)

2.7.2 Zakai Equation

Theorem 2.7.10. The quasi-filter σ(Xt) satisfies the following equation

dσ(Xt) = σ(Ht)dt + σ(Xtht)dYt. (2.7.4)

This equation is called Zakai filtering equation.

Proof : We have by the formula (2.2.7) in the proof of the Girsanov Theorem:

Lt = 1 +

∫ t

0

Lsπ(hs)dYs, (2.7.5)

and

Ltπ(Xt) = EQ[XtLt|FY
t ] = σ(Xt). (2.7.6)
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Now we see that

σ(Xt) = Ltπ(Xt) = L0π(X0) +

∫ t

0

Lsdπ(Xs) +

∫ t

0

π(Xs)dLs + 〈L, π(X)〉t

= L0π(X0) +

∫ t

0

Ls[π(Hs)ds + (π(hsXs)− π(hs)π(Xs))]dms

+

∫ t

0

π(Xs)Lsπ(hs)dYs + 〈L, π(X)〉t

= σ(X0) +

∫ t

0

σ(Hs)ds +

∫ t

0

Ls[π(hsXs)− π(hs)π(Xs)](dYs − π(hs)ds)

+

∫ t

0

π(Xs)Lsπ(hs)dYs + 〈L, π(X)〉t.

Hence

σ(Xt) = σ(X0) +

∫ t

0

σ(Hs)ds +

∫ t

0

σ(hsXs)dYs,

where integration by parts has been used. This equation is equivalent to:

dσ(Xt) = σ(Xtht)dYt + σ(Ht)dt (2.7.7)

Remark It follows from the proof of the previous theorem that if π(Xt) satisfies

(2.4.5), then σ(Xt) satisfies (2.7.4).

Theorem 2.7.11. If σ(Xt) is a solution of the Zakai equation, then the process

πt = π(Xt) defined by (2.7.3) is a solution of the Fujisaki-Kallianpur-Kunita equa-

tion

Proof : Consider

dπ(Xt) = d

(
σ(Xt)

σ(1t)

)

=
1

σ(1t)
dσ(Xt)− σ(Xt)

σ2(1t)
dσ(1t) +

σ(Xt)

σ3(1t)
(dσ(1t))

2 − 1

σ2(1t)
dσ(Xt)dσ(1t)

=
1

σ(1t)
[σ(Ht)dt + σ(Xtht)dYt]− σ(Xt)

σ2(1t)
[σ(ht)dYt] +

σ(Xt)

σ3(1t)
σ2(ht)dt

−σ(ht)σ(Xtht)

σ2(1t)
dt.
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Next, we see that

dπ(Xt) =
σ(Ht)

σ(1t)
dt +

σ(Xtht)

σ(1t)
dYt − σ(Xt)σ(ht)

σ2(1t)
dYt +

σ(Xt)σ
2(ht)

σ3(1t)
dt

−σ(ht)σ(Xtht)

σ2(1t)
dt

= π(Ht)dt + π(Xtht)dYt − π(Xt)π(ht)dYt + π(Xt)π
2(ht)dt

−π(ht)π(Xtht)dt

= π(Ht)dt + [π(Xtht)− π(Xt)π(ht)]dYt

+[π(Xt)π
2(ht)dt− π(ht)π(Xtht)dt]

= π(Ht)dt + [π(Xtht)− π(Xt)π(ht)](dYt − π(ht)dt)

= π(Ht)dt + [π(Xtht)− π(Xt)π(ht)]dmt.

Then we have finally,

π(Xt) = π(X0) +

∫ t

0

π(Hs)ds +

∫ t

0

(π(Xshs)− π(Xs)π(hs))dms (2.7.8)

This proves the theorem.

The Zakai equation takes a somewhat more concrete form in the case when

(Xt) and (Yt) are diffusion process, i.e. the process (Xt, Yt) the solution of the

system:

dXt = a(t, Xt)dt + b(t,Xt)dWt X0 = η

dYt = g(t, Xt)dt + dVt

where Wt and Vt are two independent Brownian motions and η is a random variable

with probability density p0(x) with

∫

R
x2p0(x)dx < ∞.

Theorem 2.7.12. Assume that there is an FY
t -adapted nonnegative random

process ρt(x), satisfying the Zakai PDE

dρt(x) = (L∗ρt)(x)dt + g(t, x)ρt(x)dYt, ρ0(x) = p0(x), (2.7.9)
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where

(L∗f)(x) = − ∂

∂x
(a(t, x)f(x)) +

1

2

∂2

∂x2
(b2(t, x)f(x)). (2.7.10)

Then ρt(x) is a version of the unnormalized conditional density of Xt given FY
t ,

so that for any measurable function f , such that Ef 2(Xt) < ∞

E[f(Xt)|FY
t ] =

∫
R f(x)ρt(x)dx∫
R ρt(x)dx

. (2.7.11)

Proof : The Itô formula applied to the function f(Xt) gives us:

f(Xt) = f(X0) +

∫ t

0

(Lf)(Xs)ds +

∫ t

0

b(Xs)f
′(Xs)dWs,

where

(Lf)(x) = a(t, x)
∂

∂x
f(x) +

1

2
b2(t, x)

∂2

∂x2
f(x) (2.7.12)

Next, we see that

σ0(f) =

∫

R
f(x)ρ0(x)dx

=

∫

R
f(x)p0(x)dx,

and

σs(Lf) =

∫

R
(Lf)(x)ρs(x)dx

=

∫

R

(
a(t, x)

∂

∂x
f(x) +

b2(t, x)

2

∂2

∂x2
f(x)

)
ρs(x)dx

=

∫

R

(
− ∂

∂x
a(t, x)ρs(x) +

1

2

∂2

∂x2
b2(t, x)ρs(x)

)
f(x)dx

=

∫

R
(L∗ρs)(x)f(x)dx,

and

σs(fh) =

∫

R
f(x)h(s, x)ρs(x)dx.
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Then the right hand side of Zakai equation reads

σt(f) = σ0(f) +

∫ t

0

σs(Lf)ds +

∫ t

0

σs(fh)dYs

=

∫

R
f(x)

(
p0(x) +

∫ t

0

(L∗ρs)(x)ds +

∫ t

0

h(s, x)ρs(x)dYs

)
dx

=

∫

R
f(x)ρt(x)dx.

The proof is thus complete.



CHAPTER III

FILTERING PROBLEM WITH POINT

PROCESS OBSERVATION

In this chapter, after establishing the filtering equation and quasi-filtering

equation with point process observation, we study the case of a Markov-Feller

signal process and we prove some theorems of filtering for Ornstein-Uhlenbeck

processes.

3.1 Introduction

In financial filtering, we want to estimate some financial factors through

some direct observation process depending on time. But in practice, this observa-

tion process can be observe only at discrete times, so in this Chapter we consider

a point process as an observation. For Definitions and Theorems in this section

one can refer to Brémaud (1981).

A point process over [0,∞) can be introduced into three different ways: as

a sequence of nonnegative random variables, as a discrete random measure, or via

its associated counting process. In this Chapter, we use the last way to study

financial filtering problems with point process observation.
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3.1.1 Point Processes

Definition 3.1.1. (Simple Univariate Point Processes). A realization of a point

process over [0,∞) can be described by a sequence Tn in [0,∞] such that

T0 = 0

Tn < ∞ ⇒ Tn < Tn+1.

This realization is nonexplosive, i.e.

T∞ = lim
n→∞

Tn = +∞.

To each realization Tn corresponds a counting function Nt defined by

Nt =





n, if t ∈ [Tn, Tn+1);

+∞, if t ≥ T∞.

Nt is therefore a right-continuous step function such that N0 = 0 and its jumps

are upward jumps of magnitude 1.

If the above Tn’s are random variable, defined on some probability space

(Ω,F , P ), one then calls the sequence Tn a point process. The associated counting

process Nt is also called a point process. Henceforward, unless explicitly men-

tioned, attention will be restricted to P -nonexplosive point process, that is to say

point processes such that, P -a.s.,

Nt < ∞, t ≥ 0 (or equivalently T∞ ≡ ∞)

Moreover, if the condition

E[Nt] < ∞, t ≥ 0

holds, the point process Nt is said to be integrable.
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Definition 3.1.2. (Multivariate Point Processes). Let Tn be a point process

defined on (Ω,F , P ), and let (Zn, n ≥ 1) be a sequence of {1, 2, ..., k}-valued

random variables, also defined on (Ω,F , P ). Define for all i, 1 ≤ i ≤ k and all

t ≥ 0

Nt(i) =
∑
n≥1

1(Tn ≤ t)1(Zn = i)

Both the k-vector process Nt = (Nt(1), ..., Nt(k)) and the double sequence

(Tn, Zn, n ≥ 1) are called k-variate point processes.

Definition 3.1.3. (Doubly Stochastic Poisson Processes or Conditional Poisson

Processes). Let Nt be a point process adapted to a history Ft, and let λt be a

nonnegative measurable process (all given on the same probability space (Ω,F , P ))

Suppose that

λt is F0 −measurable, t ≥ 0

and that

∫ t

0

λsds < ∞ P − a.s., t ≥ 0

If for all 0 ≤ s ≤ t and all u ∈ R

E[eiu(Nt−Ns)|Fs] = exp

{
(eiu − 1)

∫ t

s

λvdv

}

then Nt is called a (P,Ft)-doubly stochastic Poisson process or a (P,Ft)-

conditional Poisson process with the (stochastic) intensity λt.

If λt is deterministic (the notation λ(t) is used), then Nt is called a (P,Ft)-

Poisson process. If moreover Ft ≡ FN
t , one simply says; Nt is a Poisson process

with the intensity λ(t). If Ft ≡ FN
t , λ(t) ≡ 1, then Nt is the standard Poisson

process.
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Theorem 3.1.4. (Characterization of Doubly Stochastic Poisson Processes or

Conditional Poisson Processes). Let Nt be a point process adapted to some history

Ft, and let λt be a nonnegative measurable process such that for all t ≥ 0

(a) λt is F0-measurable,

(b)
∫ t

0
λsds < ∞, P − a.s.

Then, if the equality

E

[ ∫ ∞

0

CsdNs

]
= E

[ ∫ ∞

0

Csλsds

]

is verified for all nonnegative Ft-predictable process Ct, Nt is a doubly stochastic

Poisson process with the Ft-intensity λt.

Proof : See Brémaud (1981).

Theorem 3.1.5. (Watanabe Theorem). Let Nt be a point process adapted to the

history Ft, and let λ(t) be a locally integrable nonnegative measurable function.

Suppose that

Nt −
∫ t

0

λ(s)ds is an Ft-martingale.

Then Nt is an Ft-Poisson process with the intensity λ(t). (i.e., for all 0 ≤ s ≤
t, Nt − Ns is a Poisson random variable with parameter

∫ t

0

λ(u)du, independent

of Fs).

Proof : See Brémaud (1981).

Definition 3.1.6. (Progressive Process). The process Xt is said to be Ft-

progressive iff for all t ≥ 0 the mapping [0, t]×Ω into R is B([0, t])×Ft-measurable.

Definition 3.1.7. (Stochastic Intensity). Let Nt be a point process adapted to

some history Ft, and let λt be a nonnegative Ft-progressive process such that for

all n ≥ 1

∫ t

0

λsds < ∞ P − a.s.
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If for all nonnegative Ft-predictable processes Ct, the equality

E

[ ∫ ∞

0

CsdNs

]
= E

[ ∫ ∞

0

Csλsds

]

is verified, then we say: Nt admits the (P,Ft)-intensity (or Ft-intensity) λt.

Theorem 3.1.8. (Stochastic Intensity Martingale Characterization). Let Nt be a

nonexplosive point process adapted to Ft, and suppose that for some nonnegative

Ft-progressive process λt and for all n ≥ 1

Nt∧Tn −
∫ t∧Tn

0

λsds is a (P,Ft)−martingale.

Then λt is the Ft-intensity of Nt.

Proof : See Brémaud (1981).

3.2 Filtering of a General Process from Point Process Ob-

servation

3.2.1 Problem Setting and Assumptions

Let (Ω,F , P ) be a complete probability space on which all processes are

defined and adapted to a filtration (Ft, t ≥ 0).

We consider a filtering problem where the signal processes is a semimartin-

gale

Xt = X0 +

∫ t

0

Hsds + Zt, (3.2.1)

where Zt is a Ft-martingale, Ht is a bounded Ft-progressive process and

E[sups≤t |Xs|] < ∞ for every t ≥ 0, X0 is a random variable such that E|X0|2 < ∞;

the observation is given by a point process Ft-semimartingale of the form

Yt =

∫ t

0

hsds + Mt, (3.2.2)
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where Mt is a Ft-martingale with mean 0, M0 = 0 such that the future σ- field

σ(Mu −Mt; u ≥ t) is independent of the past one σ(Yu, hu; u ≤ t), ht = h(Xt) is

a positive bounded Ft- progressive process such that E

∫ t

0

h2
sds < ∞ for every t.

Moreover, we suppose that Zt and Mt are independent.

Denote by FY
t the σ-algebra generated by all random variables Ys, s ≤ t.

Thus FY
t records all information about the observation up to the time t.

Suppose that the process us =
d

ds
< Z,M >s is Fs- predictable (s ≤ t)

where <,> stands for the quadratic variation of Zt and Mt. Denote also by ûs the

FY
t - predictable projection of us. By assumptions imposed on Z and M we see

that < Z, M >= 0, so us = 0.

The filter of (Xt) based on information given by (Yt) is defined as the

conditional expectation

π(Xt) := E[Xt|FY
t ], (3.2.3)

or more general

πt(f) := E[f(Xt)|FY
t ], (3.2.4)

where f is a bounded continuous function or f ∈ Cb(R).

Denote by π(ht) the filtering process corresponding to the process ht in

(3.2.2).

3.2.2 Innovation Process

Definition 3.2.9. Let mt be a process defined by

mt := Yt −
∫ t

0

π(hs)ds. (3.2.5)

The process mt is called the innovation from the observation process Yt.

Lemma 3.2.10. mt is a point process FY
t -martingale and for any t, the future

σ-field σ(mt −ms ; t ≥ s) is independent of FY
s .
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Proof : We have by definition of mt in (3.2.5) and Yt in (3.2.2) that, for any

t ≥ s > 0,

mt −ms = Yt − Ys −
∫ t

s

π(hu)du

= Mt −Ms +

∫ t

s

{hu − π(hu)}du. (3.2.6)

Since FY
s ⊂ Fs for any s ≥ 0 and Mt is Ft-martingale that

E[Mt −Ms|FY
s ] = E

[
E[Mt −Ms|Fs]

∣∣FY
s

]
= 0. (3.2.7)

It follow from FY
u ⊃ FY

s whenever u ≥ s > 0 and definition of π(hu) in (3.2.4)

that

E[hu|FY
s ] = E

[
E[hu|FY

u ]
∣∣FY

s

]
= E[π(hu)|FY

s ]. (3.2.8)

From (3.2.8). Hence ∫ t

s

E[hu − π(hu)|FY
s ]du = 0. (3.2.9)

Fubini’s Theorem implies

E

[ ∫ t

s

{hu − π(hu)}du

∣∣∣∣FY
s

]
= 0. (3.2.10)

Thus, for any t ≥ s > 0, we get

E[mt −ms|FY
s ] = E[Mt −Ms|FY

s ] + E

[ ∫ t

s

{hu − π(hu)}du

∣∣∣∣FY
s

]
= 0, (3.2.11)

and therefore the process mt is FY
t -martingale.

Now for any s, t such that 0 ≤ s ≤ t we consider two families Ct and Dt of

sets of random variables defined as follows:

Cs,t = {sets Ca, s ≤ a ≤ t}, where Ca = {mt −mα; a ≤ α ≤ t}

Ds = {sets Db, 0 ≤ b ≤ t}, where Db = {Yβ; b ≤ β ≤ s}.
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It is easy to check that Cs,t and Ds are π-system, i.e. they are closed with

respect to finite intersection. Also they are independent each of other by (3.2.11).

It follows that (refer to Kallenberg (2002)) the σ-algebra σ(Cs,t) = σ(mt−ms, s ≤ t)

generated by Cs,t is independent of the σ-algebra σ(Ds) = FY
s generated by Ds.

The second assertion of this Lemma as thus established.

Lemma 3.2.11. Let Rt be a FY
t -martingale. Then there exists a FY

t -predictable

process Kt such that for all t ≥ 0,

∫ t

0

Ksπ(hs)ds < ∞ P − a.s, (3.2.12)

and such that Rt has the following representation:

Rt = R0 +

∫ t

0

Ksdms. (3.2.13)

Proof : See Brémaud (1981).

3.2.3 General Filtering Equation Theorem

Theorem 3.2.12. The filtering equation for the filtering problem (3.2.1)- (3.2.2)

is given by:

π(Xt) = π(X0) +

∫ t

0

π(Hs)ds +

∫ t

0

{π(hs)}−1{π(Xs−hs)− π(Xs−)π(hs)}dms.

(3.2.14)

Proof : Define

M̄t := π(Xt)− π(X0)−
∫ t

0

π(Hs)ds. (3.2.15)

First, we aim to prove that M̄t is a FY
t -martingale. To see this, we note

from the definition of M̄t in (3.2.15) that, for any t ≥ s > 0,

M̄t − M̄s = π(Xt)− π(Xs)−
∫ t

s

π(Hu)du.
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Moreover, by the rules for calculation of conditional expectation, we have

E[π(Xt)|FY
s ] = E

[
E[Xt|FY

t ]
∣∣FY

s

]
= E[Xt|FY

s ] (s ≤ t)

and

E[π(Xs)|FY
s ] = π(Xs) = E[Xs|FY

s ].

Thus

E[M̄t − M̄s|FY
s ] = E

[
π(Xt)− π(Xs)−

∫ t

s

π(Hu)du

∣∣∣∣FY
s

]

= E[Xt|FY
s ]− E[Xs|FY

s ]− E

[ ∫ t

s

π(Hu)du

∣∣∣∣FY
s

]

= E

[
Xt −Xs −

∫ t

s

π(Hu)du

∣∣∣∣FY
s

]
. (3.2.16)

Substituting the process Xt from (3.2.1) into (3.2.16), we get

E[M̄t − M̄s|FY
s ] = E

[
Zt − Zs +

∫ t

s

{Hu − π(Hu)}du

∣∣∣∣FY
s

]
. (3.2.17)

Since Zt is a Ft-martingale then

E[Zt − Zs|FY
s ] = E

[
E[Zt − Zs|Fs]

∣∣FY
s

]
= 0.

On the other hand, for any u ∈ (s, t),

E[Hu|FY
s ] = E

[
E[Hu|FY

u ]
∣∣FY

s

]
= E[π(Hu)|FY

s ].

Thus

E[Hu − π(Hu)|FY
s ] = 0,

and hence ∫ t

s

E[Hu − π(Hu)|FY
s ]du = 0.

Fubini’s Theorem implies

E

[ ∫ t

s

Hu − π(Hu)du

∣∣∣∣FY
s

]
= 0.
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We summarize the above results into (3.2.17)

E[M̄t − M̄s|FY
s ] = E[Zt − Zs|FY

s ] + E[

∫ t

s

{Hu − π(Hu)}du|FY
s ] = 0.

This proves M̄t is a FY
t -martingale.

Now we can utilize Lemma 3.2.11 to assert that there exists a FY
t -

predictable process Kt such that

∫ t

0

Ksπ(hs)ds < ∞ P -a.s., ∀t ≤ 0 and

M̄t = M̄0 +

∫ t

0

Ksdms. (3.2.18)

Equating (3.2.15) and (3.2.18) gives

π(Xt) = π(X0) +

∫ t

0

π(Hs)ds +

∫ t

0

Ksdms. (3.2.19)

Lemma 3.2.10 shows that mt is a FY
t -martingale and by Lemma 3.2.11,

there exists a FY
t -predictable process Ut such that

∫ t

0

Usπ(hs)ds < ∞ P -a.s.,

∀t ≤ 0 and

mt = m0 +

∫ t

0

Usdms. (3.2.20)

Substituting Yt from (3.2.2) into (3.2.5), we see that mt can be expressed as

mt =

∫ t

0

{hs − π(hs)}ds + Mt. (3.2.21)

Equating (3.2.20) and (3.2.5), we get

Yt =

∫ t

0

Usdms +

∫ t

0

π(hs)ds. (3.2.22)

Finally, we shall show that

Ks = {π(hs)}−1{π(Xs−hs)− π(Xs−)π(hs)}.

By definition of π(Xt) and properties of conditional expectation, we have

E[π(Xt)Yt] = E
[
E[Xt|FY

t ]Yt

]
= E

[
E[XtYt|FY

t ]
]

= E[XtYt]. (3.2.23)
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We know that the integration by parts formula applied to the processes Xt and Yt

has the form:

XtYt = X0Y0 +

∫ t

0

Xs−dYs +

∫ t

0

Ys−dXs + 〈X, Y 〉t, (3.2.24)

where Xs− = lim
u→s,u<s

Xu and 〈X, Y 〉t stands for the quadratic covariation of Xt

and Yt. Now substituting Yt from (3.2.22) into the second term of the right hand

side of (3.2.24) we get

∫ t

0

Xs−dYs =

∫ t

0

Xs−{Usdms + π(hs)ds}. (3.2.25)

Next, substituting mt from (3.2.21) into (3.2.25), we get

∫ t

0

Xs−dYs =

∫ t

0

Xs−Us

{
dMs + {hs − π(hs)}ds

}
+

∫ t

0

Xs−π(hs)ds

=

∫ t

0

Xs−UsdMs +

∫ t

0

Xs−Us{hs − π(hs)}ds

+

∫ t

0

Xs−π(hs)ds. (3.2.26)

Substituting Xt from (3.2.1) into the third term on the right hand side of (3.2.24),

we get

∫ t

0

Ys−dXs =

∫ t

0

Ys−{Hsds + dZs} =

∫ t

0

Ys−Hsds +

∫ t

0

Ys−dZs. (3.2.27)

It follows from the definition of Xt in (3.2.1) and Yt in (3.2.2) that

〈X, Y 〉t = 〈Z, M〉t = 0. (3.2.28)

Combining (3.2.26)-(3.2.28) and (3.2.24) yields

XtYt = X0Y0 +

∫ t

0

Xs−UsdMs +

∫ t

0

Xs−Us{hs − π(hs)}ds

+

∫ t

0

Xs−π(hs)ds +

∫ t

0

Ys−Hsds +

∫ t

0

Ys−dZs. (3.2.29)
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Because the expectations of the second and sixth terms of the right hand side of

(3.2.29) are equal to 0, then

E[XtYt] = E[X0Y0] + E

[ ∫ t

0

Xs−Us{hs − π(hs)}ds

]

+E

[ ∫ t

0

Xs−π(hs)ds

]
+ E

[ ∫ t

0

Ys−Hsds

]
.

The rules for calculation of the conditional expectation show that

E[XtYt] = E[X0Y0] + E

[ ∫ t

0

Us{π(Xs−hs)− π(Xs−)π(hs)}ds

]

+E

[ ∫ t

0

{Xs−π(hs) + Ys−Hs}ds

]
. (3.2.30)

On the other hand, integration by parts gives

π(Xt)Yt = π(X0)Y0 +

∫ t

0

π(Xs−)dYs +

∫ t

0

Ys−dπ(Xs) + 〈π(X), Y 〉t. (3.2.31)

Substituting Yt from (3.2.22) into the second term of (3.2.31), we get

∫ t

0

π(Xs−)dYs =

∫ t

0

π(Xs−){Usdms + π(hs)ds}. (3.2.32)

Next, substituting mt from (3.2.21) into (3.2.32), we obtain

∫ t

0

π(Xs−)dYs =

∫ t

0

π(Xs−)Us

{
dMs + {hs − π(hs)}ds

}
+

∫ t

0

π(Xs−)π(hs)ds

=

∫ t

0

π(Xs−)UsdMs +

∫ t

0

π(Xs−)Us{hs − π(hs)}ds

+

∫ t

0

π(Xs−)π(hs)ds. (3.2.33)

Substituting π(Xt) from (3.2.19) into the third term of (3.2.31), we get

∫ t

0

Ys−dπ(Xs) =

∫ t

0

Ys−{π(Hs)ds + Ksdms}. (3.2.34)

Next, substituting mt from (3.2.21) into (3.2.34), we get

∫ t

0

Ys−dπ(Xs) =

∫ t

0

Ys−π(Hs)ds +

∫ t

0

Ys−Ks

{
dMs + {hs − π(hs)}ds

}

=

∫ t

0

Ys−π(Hs)ds +

∫ t

0

Ys−KsdMs

+

∫ t

0

Ys−Ks{hs − π(hs)}ds. (3.2.35)
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By using the expressing of π(Xt) from (3.2.19) and that of Yt from (3.2.22), we

have

〈π(X), Y 〉t = 〈
∫ t

0

Ksdms,

∫ t

0

Usdms〉t =

∫ t

0

UsKsd〈m,m〉s =

∫ t

0

UsKshsds.

(3.2.36)

Combining (3.2.33), (3.2.35), (3.2.36) and (3.2.31), we obtain

π(Xt)Yt = π(X0)Y0 +

∫ t

0

π(Xs−)UsdMs +

∫ t

0

π(Xs−)Us{hs − π(hs)}ds

+

∫ t

0

π(Xs−)π(hs)ds +

∫ t

0

Ys−KsdMs +

∫ t

0

Ys−π(Hs)ds

+

∫ t

0

Ys−Ks{hs − π(hs)}ds +

∫ t

0

UsKshsds. (3.2.37)

The expectations of the second and fifth terms of the right hand side of (3.2.37)

are equal to 0, so

E[π(Xt)Yt] = E[π(X0)Y0] + E

[ ∫ t

0

π(Xs−)Us{hs − π(hs)}ds

]

+E

[ ∫ t

0

π(Xs−)π(hs)ds

]
+ E

[ ∫ t

0

Ys−π(Hs)ds

]

+E

[ ∫ t

0

Ys−Ks{hs − π(hs)}ds

]
+ E

[ ∫ t

0

UsKshsds

]
.

The properties of conditional expectation reveal that

E[π(Xt)Yt] = E[X0Y0] + E

[ ∫ t

0

{Ys−Hs + Xs−π(hs)}ds

]
+ E

[ ∫ t

0

UsKsπ(hs)ds

]
.

(3.2.38)

It follows from (3.2.23), (3.2.30) and (3.2.38) that

E

[ ∫ t

0

Us{Ksπ(hs)− π(Xs−hs) + π(Xs−)π(hs)}ds

]
= 0.

For all t ≥ 0 and all FY
t -predictable processes Ut such that

∫ t

0
Usπ(hs)ds < ∞,

P -a.s., ∀t ≥ 0, if Ct is any nonnegative bounded FY
t -predictable process satisfying

the same requirement as Ut, then

E

[ ∫ t

0

Cs{Ksπ(hs)− π(Xs−hs) + π(Xs−)π(hs)}ds

]
= 0,
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the latter equality being valid for all nonnegative bounded FY
t -predictable

processes Ct, that is

Ks =
π(Xs−hs)− π(Xs−)π(hs)

π(hs)
a.s.

Substituting Ks into (3.2.18), we get

π(Xt) = π(X0) +

∫ t

0

π(Hs)ds +

∫ t

0

{π(hs)}−1{π(Xs−hs)− π(Xs−)π(hs)}dms.

The proof of this theorem is thus complete.

3.2.4 Quasi-filtering

There is some inconvenience in application of (3.2.14) because the appear-

ance of the factor {π(hs)}−1. To avoid this difficulty we introduce the unnormalized

conditional filtering or quasi-filtering in other terms.

As we know in the method of reference probability, the probability P ac-

tually governing the statistics of the observation Yt is obtained from a probability

Q by an absolutely continuous change P → Q. We assume that Q is the refer-

ence probability such that Y is a (Q,Ft)- Poisson process of intensity 1, where

Ft = FY
t ∨ FX

∞.

Denoting for every t ≥ 0 by Pt and Qt the restrictions of P and Q re-

spectively to (Ω,Ft) we have Pt << Qt. It is known that the corresponding

Radon-Nykodym derivative is the unique solution of a Doleans-Dade equation of

the form:

Lt = 1 +

∫ t

0

Ls−(hs − 1)d(Ys − s), (3.2.39)

where ht and Yt are given in (3.2.2).

The explicit solution of (3.2.39) is

Lt =
dPt

dQt

=
∏

0≤s≤t

hs∆Ys exp

{∫ t

0

(1− hs)ds

}
. (3.2.40)
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Let Zt be a real valued and bounded process adapted to Ft, then for every

history Gt such that Gt ⊆ Ft, t ≥ 0 we have a Bayes formula

EP [Zt|Gt] =
EQ[ZtLt|Gt]

EQ[Lt|Gt]
, (3.2.41)

where EP (.|Gt) and EQ(.|Gt) are conditional expectations under probabilities P

and Q respectively.

Definition 3.2.13. The process σ(Xt) defined by

σ(Xt) = EQ[LtXt|FY
t ] (3.2.42)

is called the optimal quasi-filter (or quasi-filter) of Xt based on data FY
t . It is in

fact an unnormalized filter of Xt.

Then the filter of the process Xt can be written as

π(Xt) =
σ(Xt)

σ(1t)
, (3.2.43)

or in more general

π(f(Xt)) =
σ(f(Xt))

σ(1t)
. (3.2.44)

Theorem 3.2.14. The assumptions are those prevailing in Theorem 3.2.12. More-

over, assume that Zt and Mt have no common jumps. Then the quasi-filter σ(Xt)

satisfies the following equation

σ(Xt) = σ(X0) +

∫ t

0

σ(Hs)ds +

∫ t

0

{σ(Xs−hs)− σ(Xs−)}dµs, (3.2.45)

where

µt = Yt − t. (3.2.46)

1s = 1 for every s and σ(1s) = EQ(Ls|FY
s ).
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Proof : It is known that EQ[Lt|FY
t ] satisfies the equation

EQ[Lt|FY
t ] = 1 +

∫ t

0

EQ[Ls−|FY
s−](hs − 1)d(Ys − s). (3.2.47)

An application of the integration by parts formula gives

EQ[Lt|FY
t ]π(Xt) = EQ[L0|FY

0 ]π(X0) +

∫ t

0

EQ[Ls−|FY
s−]dπ(Xs)

+

∫ t

0

π(Xs−)dEQ[Ls|FY
s ]

+〈EQ[L|FY ], π(X)〉t. (3.2.48)

Next we shall compute the second term on the right hand side of (3.2.48). Substi-

tuting π(Xt) by its expression from (3.2.14), we get
∫ t

0

EQ[Ls−|FY
s−]dπ(Xs) =

∫ t

0

EQ[Ls−|FY
s−]

{
π(Hs)ds + Ksdms

}

=

∫ t

0

EQ[Ls−|FY
s−]Ks{dYs − π(hs)ds}

+

∫ t

0

EQ[Ls−|FY
s−]π(Hs)ds, (3.2.49)

where

Kt = {π(ht)}−1{π(Xt−ht)− π(Xt−)π(ht)}. (3.2.50)

By (3.2.47), the third term on the right hand side of (3.2.48) becomes
∫ t

0

π(Xs−)dEQ[Ls|FY
s ] =

∫ t

0

π(Xs−)
{

EQ[Ls−|FY
s−]{π(hs)−1}d(Ys−s)

}
. (3.2.51)

It follows from the definition of EQ[Lt|FY
t ] in (3.2.47) and π(Xt) in (3.2.14) that

〈EQ[L|FY ], π(X)〉t =

∫ t

0

KsEQ[Ls−|FY
s−]{π(hs)− 1}dYs. (3.2.52)

Substituting (3.2.49), (3.2.51) and (3.2.52) into (3.2.48), we get

EQ[Lt|FY
t ]π(Xt) = EQ[L0|FY

0 ]π(X0) +

∫ t

0

EQ[Ls−|FY
s−]π(Hs)ds

+

∫ t

0

EQ[Ls−|FY
s−]Ks{dYs − π(hs)ds}

+

∫ t

0

π(Xs−)
{

EQ[Ls−|FY
s−]{π(hs)− 1}d(Ys − s)

}

+

∫ t

0

KsEQ[Ls−|FY
s−]{π(hs)− 1}dYs. (3.2.53)
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Combining the third and fifth terms on the right hand side of (3.2.53), we have

EQ[Lt|FY
t ]π(Xt) = EQ[L0|FY

0 ]π(X0) +

∫ t

0

EQ[Ls−|FY
s−]π(Hs)ds

+

∫ t

0

π(Xs−)
{

EQ[Ls−|FY
s−](π(hs)− 1)d(Ys − s)

}

+

∫ t

0

Ksπ(hs)EQ[Ls−|FY
s−]d(Ys − s). (3.2.54)

Substituting Kt from (3.2.50) into (3.2.54), we obtain

EQ[Lt|FY
t ]π(Xt) = EQ[L0|FY

0 ]π(X0) +

∫ t

0

EQ[Ls−|FY
s−]π(Hs)ds

+

∫ t

0

π(Xs−)
{

EQ[Ls−|FY
s−](π(hs)− 1)d(Ys − s)

}

+

∫ t

0

{π(Xs−hs)− π(Xs−)π(hs)}EQ[Ls−|FY
s−]d(Ys − s).

(3.2.55)

Combining the third and fourth terms on the right hand side of (3.2.55) gives

EQ[Lt|FY
t ]π(Xt) = EQ[L0|FY

0 ]π(X0) +

∫ t

0

EQ[Ls−|FY
s−]π(Hs)ds

+

∫ t

0

{π(Xs−hs)− π(Xs−)}EQ[Ls−|FY
s−]d(Ys − s).

(3.2.56)

We note from (3.2.42) and (3.2.44) that

σ(f(Xt)) = π(f(Xt))σ(1t) = π(f(Xt))EQ[Lt|FY
t ], ∀f ∈ Cb(R). (3.2.57)

By choosing suitable functions f ∈ Cb(R) and substituting (3.2.57) into (3.2.56),

we get

σ(Xt) = σ(X0) +

∫ t

0

σ(Hs)ds +

∫ t

0

{σ(Xs−hs)− σ(Xs−)}d(Ys − s)

= σ(X0) +

∫ t

0

σ(Hs)ds +

∫ t

0

{σ(Xs−hs)− σ(Xs−)}dµs,

where µt = Yt − t. The proof is now complete.
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Theorem 3.2.15. If σ(Xt) satisfies (3.2.45), then the process π(Xt) satisfies

(3.2.14).

Proof : We assume that Q is the probability such that Yt is a (Q,Ft)-Poisson

process of intensity 1 (i.e. hs = 1). Then

π(hs) =
σ(ht)

σ(1t)
=

EQ[hsLs|FY
s ]

EQ[Ls|FY
s ]

=
EQ[Ls|FY

s ]

EQ[Ls|FY
s ]

= 1

and π−1(hs) = 1. Consider

dπ(Xt) = d

(
σ(Xt)

σ(1t)

)

=
1

σ(1t)
dσ(Xt)− σ(Xt)

σ2(1t)
dσ(1t) +

σ(Xt)

σ3(1t)
(dσ(1t))

2 − 1

σ2(1t)
dσ(Xt)dσ(1t)

=
1

σ(1t)
[σ(Ht)dt + σ(Xt−ht)dmt]− σ(Xt)

σ2(1t)
[(σ(ht)− σ(1t))dMt]

+
σ(Xt)

σ3(1t)
[(σ(h)t − σ(1t))dMt]

2

− 1

σ2(1t)
[σ(Ht)dt + σ(Xt−ht)dmt][(σ(ht)− σ(1t))dMt]

=
σ(Ht)

σ(1t)
dt +

σ(Xt−ht)− σ(Xt−)

σ(1t)
dmt

=
σ(Ht)

σ(1t)
dt +

σ(1t)

σ(ht)

[
σ(Xt−ht)

σ(1t)
− σ(Xt−)

σ(1t)

σ(ht)

σ(1t)

]
dmt

= π(Ht)dt + π−1(hs)[π(Xt−ht)− π(Xt−)π(ht)]dmt.

Then we have finally,

π(Xt) = π(X0) +

∫ t

0

π(Hs)ds +

∫ t

0

{π(hs)}−1{π(Xs−hs)− π(Xs−)π(hs)}dms

This proves the theorem.
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3.3 Filtering for a Fellerian System

3.3.1 Filtering for a Feller Process with Point Process Ob-

servation

Suppose that Xt is a Markov process on a filtered probability space

(Ω,F , (Ft), P ) taking values in R and that the semigroup (Pt , t ≥ 0) associ-

ated with the transition probability Pt(x,E) is a Feller semigroup, that is

Ptf(x) =

∫ t

0

Pt(x, dy)f(y), (3.3.1)

maps C(R) into itself for all t ≥ 0 and satisfies the following relation

lim
t↓0

Ptf(x) = f(x), (3.3.2)

uniformly in R for all f ∈ C(R), where C(R) is the space of all real continuous

function over R. Assume that the observation Yt is a Poisson process of intensity

ht = h(Xt) ∈ C(R).

As before the filter πt is defined as:

πt(f) := π(f(Xt)) = EP [f(Xt)|FY
t ]. (3.3.3)

Also we have

σt(f) := σ(f(Xt)) = EQ[Ltf(Xt)|FY
t ], (3.3.4)

where the probability Q and the likelihood ratio are defined as before.

Denote by mt the innovation process of Yt:

mt := Yt −
∫ t

0

π(hs)ds = Yt −
∫ t

0

σ(hs)

σ(1s)
ds. (3.3.5)

Theorem 3.3.16. If A is the infinitesimal generator of the semigroup Pt of the

signal process, then the optimal filter πt(f) = π(f(Xt)) satisfies the two following
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equations:

(a) πt(f) = π0(f) +

∫ t

0

πs(Af)ds

+

∫ t

0

π−1
s (h){πs−(fh)− πs−(f)πs(h)}dms (3.3.6)

(b) πt(f) = π0(Ptf) +

∫ t

0

π−1
s (h){πs−(hPt−sf)

−πs−(Pt−sf)πs(h)}dms . (3.3.7)

where f ∈ Cb(R) and πs−(f) = π(f(Xs−)).

Proof :

(a) First, we prove that Cf
t := f(Xt)− f(X0)−

∫ t

0

Af(Xs)ds is a Ft-martingale,

where (Ft) is the filtration to which (Xt) is adapted. To do that, for any t ≥ s > 0,

E[Cf
t − Cf

s |Fs] = E

[
f(Xt)− f(Xs)−

∫ t

s

Af(Xu)du

∣∣∣∣Fs

]

= E[f(Xt)|Fs]− E[f(Xs)|Fs]− E

[ ∫ t

s

Af(Xu)du)

∣∣∣∣Fs

]

= E[f(Xt)|Fs]− f(Xs)− E

[ ∫ t

s

Af(Xu)du)

∣∣∣∣Fs

]

= Pt−sf(Xs)− f(Xs)− E

[ ∫ t

s

Af(Xu)du)

∣∣∣∣Fs

]

= Pt−sf(Xs)− f(Xs)−
∫ t

s

AE[f(Xu)du|Fs]du

= Pt−sf(Xs)− f(Xs)−
∫ t

s

APu−sf(Xs)du

= Pt−sf(Xs)− f(Xs)−
∫ t−s

0

APuf(Xs)du. (3.3.8)

Recall the property of Markov processes that

Ptf − f =

∫ t

0

PsAfds =

∫ t

0

APsfds. (3.3.9)

It follows from (3.3.8) and (3.3.9), that

E[Cf
t − Cf

s |Fs] = 0.
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This proves Cf
t is a Ft-martingale. Next we consider the signal process

f(Xt) = f(X0) +

∫ t

0

Af(Xs)ds + Cf
t

with the observation process

Yt =

∫ t

0

hsds + Mt.

By using Theorem 3.2.12, we obtain

π(f(Xt)) = π(f(X0)) +

∫ t

0

π(Af(Xs))ds

∫ t

0

{π(hs)}−1{π(f(Xs−)hs)− π(f(Xs−))π(hs)}dms.

(b) For f ∈ Cb(R) we put

Qt
s =





f(Xt), if t < s; (1)

Pt−sf(Xs), if t ≥ s. (2)

First, we prove that (Qt
s)s is a Fs-martingale. We have to prove that

E[Qt
s|Fu] = Qt

u for any u < s.

case 1 : if u ≤ s ≤ t

E[Qt
s|Fu] = E[Pt−sf(Xs)|Fu]

= E
[
E[f(Xt)|Fs]

∣∣Fu

]

= E[f(Xt)|Fu]

= Pt−uf(Xu) (by definition of the operator Pt)

= Qt
u (by definition (2) of Qt

s)

case 2 : if u ≤ t ≤ s

E[Qt
s|Fu] = E[f(Xt)|Fu]

= Pt−uf(Xu) (by definition of the operator Pt)

= Qt
u (by definition (2) of Qt

s)
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case 3 : if t ≤ u ≤ s

E[Qt
s|Fu] = E[f(Xt)|Fu]

= f(Xt) (because f(Xt) is measurable w.r.t. Fu, u ≥ t)

= Qt
u (by definition (1) of Qt

s)

Next we consider Xs = Qt
s as a signal process with the observation process

Ys =

∫ s

0

hudu + Ms.

By using Theorem 3.2.12, we obtain

π(Xt) = π(X0) +

∫ t

0

{π(hs)}−1{π(Xs−hs)− π(Xs−)π(hs)}dms.

It follows from the definition of Qt
s in (1) and (2), we obtain

π(f(Xt)) = π(Ptf(X0)) +

∫ t

0

{π(hs)}−1{π(Pt−sf(Xs−)hs)

−π(Pt−sf(Xs−))π(hs)}dms.

Theorem 3.3.17. The quasi-filter σt satisfies the two following equations:

(a) σt(f) = σ0(f) +

∫ t

0

σs(Af)ds +

∫ t

0

{σs−(hf)− σs−(f)}dµs

(b) σt(f) = σ0(Ptf) +

∫ t

0

{σs−(hPt−sf)− σs−(Pt−sf)}dµs

where f ∈ Cb(R), σs−(f) = σ(f(Xs−)).and µt = Yt − t.

Proof :

(a) Recall that Cf
t := f(Xt)− f(X0)−

∫ t

0

Af(Xs)ds is a Ft-martingale. Consider

the signal process

f(Xt) = f(X0) +

∫ t

0

Af(Xs)ds + Cf
t

with the observation process

Yt =

∫ t

0

hsds + Mt.
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By using Theorem 3.2.14, we obtain

σ(f(Xt)) = σ(f(X0)) +

∫ t

0

σ(Af(Xs))ds +

∫ t

0

{σ(f(Xs−)hs)− σ(f(Xs−))}dµs

(b) Put

Qt
s =





f(Xt), if t < s;

Pt−sf(Xs), if t ≥ s.

We can see that Qt
s is a Fs-martingale. Next we consider Xs = Qt

s as a signal

process with the observation process

Ys =

∫ s

0

hudu + Ms.

By using Theorem 3.2.14, we obtain

σ(f(Xt)) = σ(Ptf(X0)) +

∫ t

0

{σ(Pt−sf(Xs−)hs)− σ(Pt−sf(Xs−))}dµs.

3.4 Filtering for Ornstein-Uhlenbeck Process

Let Xt be stochastic process with initial value X0 of standard normal dis-

tribution X0 ∼ N (0, 1). Xt is called an Ornstein-Uhlenbeck process if it satisfies

one of seven definitions below.

Definition 3.4.18. Xt is a solution of SDE

dXt = −αXtdt + γdWt, (3.4.1)

X0 ∼ N (0, 1).

Definition 3.4.19. Xt satisfies

Xt = X0e
−αt + γ

∫ t

0

e−α(t−u)dWu,

X0 ∼ N (0, 1).
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Definition 3.4.20. Xt is a Gaussian process with

(a) EXt = 0 ∀t

(b) R(s, t) = E(XtXs) =
γ2

2α
e−α|t−s|.

Definition 3.4.21. Xt is a stationary Markov process with the density of the

transition probability is

pt(x, y) =
1√

γπ(1− e−2αt)
exp

{
− (y − xe−2αt)2

γ(1− 2e−2αt)

}
.

In general

P (x, s; y, t) =
1√

γπ(1− e−2α(t−s))
exp

{
− (y − xe−2α(t−s))2

γ(1− 2e−2α(t−s))

}
.

Definition 3.4.22. Xt is a Feller process with semigroup (Pt, t ≥ 0) defined as

Ptf(x) =

∫

R
f

(
e−αtx +

γ2

2α

√
1− e−2αty

)
µ(dy) (3.4.2)

where µ is Gaussian measure on R

µ(dx) =
1√
2π

e−x2/2dx

and

lim
t→0

Ptf(x) = f(x).

Definition 3.4.23. Xt is a Feller process with (Pt, t ≥ 0) defined as

Ptf(x) = E
[
f
(
e−αtx +

γ2

2α

√
1− e−2αtY

)]
,

Y ∼ N (0, 1).

Definition 3.4.24. Xt is expressed by

Xt = ctX + stY
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where

ct = e−αt

st =
γ2

2α

√
1− e−2αt

X,Y are two independent standard Gaussian random variables (i.e., X, Y ∼
N (0, 1)).

3.4.1 Filtering for Ornstein-Uhlenbeck Process from Point

Process Observation

We recall in this section some facts on Ornstein- Uhlenbeck processes and

show how to use them to our filtering problems. This process is of importance in

studies in finance. It has various ’ good properties ’ to describe many elements in

financial models such as that of interest rate ( Vasiček, Ho-Lee, Hull-White, etc.)

or stochastic volatility of asset pricing.

We will apply results of the previous section to the following filtering prob-

lem:

• Signal process: An Ornstein-Uhlenbeck process Xt that is solution of the

equation (3.4.1).

• Observation process: A point process Nt of intensity λt > 0.

So the signal and observation processes (Xt, Nt) can be expressed in the

form

dXt = −αXtdt + γdWt , X0 ∼ N (0, 1), (3.4.3)

dNt = λtdt + dMt, (3.4.4)

where α, γ > 0 , λt is a Ft-adapted process, Mt is a point process martingale

independent of Wt.

Denote by FN
t the σ-algebra of observation that is generated by (Ns, s ≤ t).
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The filter of (Xt) based on data given by (FN
t ) is denoted now by X̂t:

X̂t = πt(X) = E(Xt|FN
t )

and also πt(f) = f̂(Xt) = E(f(Xt)|FN
t ) , f ∈ Cb(R).

The innovation process mt is given by

mt = Nt −
∫ t

0

π(λs)ds, (3.4.5)

and dmt = dNt − π(λt)dt.

Since the semigroup (Pt , t ≥ 0) for Xt is defined by (3.4.2), the infinitesimal

operator At is given by

Atf = lim
t→0

1

t
(Ptf − f) = −αxf ′(x) +

1

2α
γ2f ′′(x). (3.4.6)

On the other hand, Ptf can be expressed under the form:

(Ptf)(x) = E
[
f
(
e−αtx +

γ2

2α

√
1− e−2αtY

)]
, (3.4.7)

where Y is a standard Gaussian variable, Y ∼ N (0, 1).

Then from Theorem 3.3.16 and 3.3.17 we can get:

Theorem 3.4.25. The filter πt(f) for the filtering problem (3.4.3)- (3.4.4) is given

by one of two following equations:

(a) πt(f) = π0(f) +

∫ t

0

πs

(
− αXf ′(X) +

γ2

2α
f ′′(X)

)
ds

+

∫ t

0

π−1
s (λ){πs−(λf)− πs−(f)πs(λ)}dms,

(b) πt(f) = π0(Ptf) +

∫ t

0

π−1
s (λ){πs−(λPt−sf)− πs−(Pt−sf)πs(λ)}dms,

where πs−(f) = π(f(Xs−)), mt = Ns −
∫ t

0

πs(λ)ds and Pt is given by (3.4.7).
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Theorem 3.4.26. The quasi-filter σt(f) for the filtering problem (3.4.3)- (3.4.4)

is given by one of two following equations:

(a) σt(f) = σ0(f) +

∫ t

0

σs

(
− αXf ′(X) +

γ2

2α
f ′′(X)

)
ds

+

∫ t

0

{σs−(λf)− σs−(f)}dµs,

(b) σt(f) = σ0(Ptf) +

∫ t

0

{σs−(λPt−sf)− σs−(Pt−sf)}dµs,

where µt = Nt − t, σs−(f) = σ(f(Xs−)), f ∈ Cb(R) and Pt is given by (3.4.7).



CHAPTER IV

FRACTIONAL FILTERING THEORY

In this chapter, we consider a fractional filtering problem from an approxi-

mation approach. We prove that the limit of the approximate filters is the solution

of the original fractional filtering problem. A general problem, where both signal

and observation are fractional, is investigated as well.

4.1 Introduction to Fractional Brownian Motion

It is known that fractional Brownian motion (fBm) was introduced first

by Mandelbrot and Van Nees (1968). This is a centered Gaussian process BH =

{BH
t , t ≥ 0} with covariance

E(BH
s BH

t ) =
1

2

(
s2H + t2H − |t− s|2H

)
, (4.1.1)

where H is called the Hurst parameter, 0 < H < 1.

In the case where H = 1
2
,

E(B1/2
s B

1/2
t ) =

1

2
(s + t− |t− s|), (4.1.2)

we have an ordinary standard Brownian motion. This is in general neither a

martingale nor a Markov process. In contrary, it exhibits a long-range dependence.

Some approaches to fractional stochastic calculus have been introduced by Coutin

and Decreusefond (2000), Dai and Heyde (1996), Decreusefond and Üstünel (1999).

Stochastic filtering problems in fractional stochastics were studied by var-

ious authors. The chief obstacle in the study of these problems is the fact that

the signal process or the observation process is driven not by a martingale and
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powerful tools of martingale theory can not be applied as in traditional stochastic

filtering theory. Some attempts have been made by Decreusefond and Üstünel

(1999) to overcome this difficulty by invoking the Malliavin Calculus

We know that, the fBm BH = (BH
t , t ≥ 0) has the following representation

BH
t =

1

Γ(1− α)

{
Zt +

∫ t

0

(t− s)αdWs

}
, (4.1.3)

where {Ws, s ∈ R} is a standard Brownian motion, α = H − 1
2
∈ (− 1

2
, 1

2

)
. Since

the process Zt =
∫ 0

−∞
[
(t−s)α−(−s)α

]
dWs has absolutely continuous trajectories,

it suffices to consider the term

Bt =

∫ t

0

(t− s)αdWs. (4.1.4)

In fact, Bt is a fractional Brownian motion of the Liouville form.

4.2 Convergence of a Semimartingales Bε
t

Let BH
t be fractional Brownian motion and Wt be the corresponding Brown-

ian motion in its representation (4.1.3). Suppose that 0 < α < 1
2
, where α = H− 1

2
.

Define

Bt =

∫ t

0

(t− s)αdWs (4.2.1)

and

Bε
t =

∫ t

0

(t− s + ε)αdWs (4.2.2)

for every ε > 0. The Ito stochastic differential of Bε
t is then

dBε
t =

( ∫ t

0

α(t− s + ε)α−1dWs

)
dt + εαdWt. (4.2.3)
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Indeed by applying the stochastic theorem of Fubini, we have

∫ t

0

∫ s

0

(s− u + ε)α−1dWuds =

∫ t

0

[ ∫ t

u

(s− u + ε)α−1ds
]
dWu

=
1

α

∫ t

0

[
(t− u + ε)α − εα

]
dWu

=
1

α

[ ∫ t

0

(t− u + ε)αdWu − εαWt

]
(4.2.4)

Substituting (4.2.2) into (4.2.4) then

∫ t

0

∫ s

0

(s− u + ε)α−1dWuds =
1

α
(Bε

t − εαWt). (4.2.5)

We get Bε
t by rearranging (4.2.5)

Bε
t = α

∫ t

0

∫ s

0

(s− u + ε)α−1dWuds + εαWt. (4.2.6)

Define

ϕε
t =

∫ t

0

(t− u + ε)α−1dWu. (4.2.7)

It follows from definition of ϕε
t in (4.2.7). Hence Bε

t in (4.2.6) can be written as

Bε
t =

∫ t

0

αϕε
sds + εαWt (4.2.8)

or equivalently,

dBε
t = αϕε

tdt + εαdWt. (4.2.9)

So Bε
t is a semimartingale.

We recall here a fundamental result given in Thao (2006).

Theorem 4.2.1. Bε
t converges to Bt in L2(Ω,F , P ) when ε → 0. This convergence

is uniform with respect to t ∈ [0, T ].

Proof : See Thao (2003) and Sealim (2004).
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Remarks

1. The σ-field generated by the random variables {Bs; 0 ≤ s ≤ t} can be

denoted by

FB
t = σ(Bs; 0 ≤ s ≤ t). (4.2.10)

In a similar way, the σ-field generated by the random variables {Ws; 0 ≤
s ≤ t} can be denoted by

FW
t = σ(Ws; 0 ≤ s ≤ t) (4.2.11)

where Wt is the Brownian motion corresponding to fractional Brownian mo-

tion Bt.

2. Denote the σ-field generated by the random variables {Bs+ε; s ≤ t} as

FB.+ε

t = σ(Bs+ε; s ≤ t). (4.2.12)

We see that

FB.+ε

t = σ(Bs+ε; s ≤ t)

= σ(Bs+ε; s + ε ≤ t + ε)

= σ(Bu; u ≤ t + ε)

= FB
t+ε. (4.2.13)

3. We consider

FB
t = σ(Bs; 0 < s ≤ t)

⊂ σ(Bs; 0 < s ≤ t + ε)

= FB
t+ε (4.2.14)
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and

FB.+ε

t = σ(Bs+ε; s ≤ t)

= σ(Ws; 0 ≤ s ≤ t + ε)

= FW
t+ε. (4.2.15)

Hence

FB
t ⊂ FB

t+ε = FB.+ε

t = FW
t+ε (4.2.16)

4.3 Fractional Filtering for a General Signal Process

In this section, we consider a filtering problem where the signal process is

a general stochastic process and the observation process is a fractional process.

Signal process:

Xt, 0 ≤ t ≤ T, (4.3.1)

where E|Xt| < ∞, ∀t ∈ [0, T ].

Observation process:

Yt =

∫ t

0

hsds + Bt, 0 ≤ t ≤ T, (4.3.2)

where ht = h(Xt) is a continuous process with E

∫ t

0

h2
sds < ∞ and Bt is the

fractional process given by

Bt =

∫ t

0

(t− s)αdWs. (4.3.3)

For any ε > 0, we establish a new filtering problem (or an approximate

filtering problem).

Signal process:

Xt, 0 ≤ t ≤ T, (4.3.4)

where E|Xt| < ∞, ∀t ∈ [0, T ].
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Observation process:

Y ε
t =

∫ t

0

hsds + Bε
t , 0 ≤ t ≤ T, (4.3.5)

where ht = h(Xt) is a continuous process with E

∫ t

0

h2
sds < ∞ and Bε

t is given by

Bε
t =

∫ t

0

(t− s + ε)αdWs. (4.3.6)

Define the filter of the process (Xt, 0 ≤ t ≤ T ) based on observation process

(Yt, 0 ≤ t ≤ T ) as the following conditional expectation

π(Xt) := E[Xt|FY
t ], (4.3.7)

or more general

πt(f) := E[f(Xt)|FY
t ], (4.3.8)

where f is any continuous and bounded function on R (or f ∈ Cb(R)) and FY
t is

a σ-algebra generated by (Ys, s ≤ t).

Also the filter of the process (Xt, 0 ≤ t ≤ T ) based on observation (Y ε
t , 0 ≤

t ≤ T ) is

πε(Xt) := E[Xt|FY ε

t ], (4.3.9)

or in more general form

πε
t (f) := E[f(Xt)|FY ε

t ], (4.3.10)

where f ∈ Cb(R) and FY ε

t is the σ-algebra generated by (Y ε
s , s ≤ t).

Theorem 4.3.2. The filter πε
t (f) converges to πt(f) in L2(Ω,F , P ) as ε → 0.

Proof : Consider the process Y ε
t from (4.3.5). It follows from (4.3.2) and (4.5.7)
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that

‖ Yt − Y ε
t ‖ =

(
E|Yt − Y ε

t |2
)1/2

=
(
E|(

∫ t

0

hsds + Bt)− (

∫ t

0

hsds + Bε
t )|2

)1/2

=
(
E|Bt −Bε

t |2
)1/2

= ‖ Bt −Bε
t ‖

Theorem 4.2.1 shows that Bε
t → Bt in L2(Ω,F , P ) as ε → 0, then Y ε

t → Yt

in L2(Ω,F , P ) as ε → 0. If we take ε =
1

n
, then Y

1/n
t → Yt in L2(Ω,F , P ) as

n →∞.

On the other hand, we have

FY 1/n

t ⊂ FY
t+ 1

n

We have a non-increasing collection of σ-algebras (FY
t+ 1

n

) such that

∩nFY
t+1/n = FY

t (i.e. FY 1/n

t → FY
t as n →∞). And by assumption E|Xt| < ∞, it

follows from the Levy Theorem that

E[f(Xt)|FY 1/n

t ] → E[f(Xt)|FY
t ] as n →∞. (4.3.11)

It follows from definition of π
1/n
t (f), πt(f) and (4.3.11), we obtain

π
1/n
t (f) → πt(f) as n →∞ (4.3.12)

Because we take ε = 1
n
, then

πε
t (f) → πt(f) as ε → 0 (4.3.13)

and the convergence holds in L2(Ω,F , P ) and almost surely as ε → 0.
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4.4 Fractional Filtering for a Semimartingale Signal

Process

In this section, we consider a filtering problem where the signal process is

a semimartingale process and the observation process is a fractional process.

Signal process:

Xt = X0 +

∫ t

0

Hsds + Vt, 0 ≤ t ≤ T, (4.4.1)

where Vt is a Brownian motion and Ht is a stochastic process such that

E

∫ t

0

H2
s ds < ∞.

Observation process:

Yt =

∫ t

0

hsds + Bt, 0 ≤ t ≤ T, (4.4.2)

where ht = h(Xt) is a process with E

∫ t

0

h2
sds < ∞ and Bt is a fractional Brownian

motion defined by

Bt =

∫ t

0

(t− s)αdWs, (4.4.3)

where Brownian motion process Wt in this expression is independent of Vt.

As in the last section, we can consider the new problem (an approximate

filtering problem).

Signal process:

Xt = X0 +

∫ t

0

Hsds + Vt, 0 ≤ t ≤ T, (4.4.4)

where Vt is a Brownian motion and Ht is a stochastic process such that

E

∫ t

0

H2
s ds < ∞.

Observation process:

Y ε
t =

∫ t

0

hsds + Bε
t , 0 ≤ t ≤ T, (4.4.5)
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where ht = h(Xt) with E

∫ t

0

h2
sds < ∞ and Bε

t is given by

Bε
t =

∫ t

0

(t− s + ε)αdWs. (4.4.6)

As before, we define the filter for an exact filtering problem as

πt(f) := E[f(Xt)|FY
t ], (4.4.7)

where FY
t = σ(Ys, s ≤ t) and f ∈ Cb(R). And also, define the filter for an

approximate filtering problem as

πε
t (f) := E[f(Xt)|FY ε

t ], (4.4.8)

where FY ε

t = σ(Y ε
s , s ≤ t) and f ∈ Cb(R). And define the innovation process:

νε
t =

1

εα
[Y ε

t −
∫ t

0

πε
s(h̄)ds], (4.4.9)

then νε
t is a FY ε

t - martingale.

Theorem 4.4.3. The filter πt(f) = E[f(Xt)|FY
t ] is written by

πt(f) = L2 − lim
ε→0

πε
t (f), (4.4.10)

where πε
t (f) satisfies the equation

πε
t (f) = πε

0(f) +

∫ t

0

πε
s(H̄)ds +

∫ t

0

[πε
s(f(X)h̄)− πε

s(f(X))πε
s(h̄)]ε−αdνε

s ,

(4.4.11)

where

H̄t = f ′(Xt)Ht +
1

2
f ′′(Xt) (4.4.12)

h̄t = ht + αϕε
t , ϕε

t =

∫ t

0

(t− s + ε)α−1dWt (4.4.13)

νε
t =

1

εα
[Y ε

t −
∫ t

0

πε
s(h̄)ds] (4.4.14)
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Proof : It follows from (4.4.5) and (4.2.8)

Y ε
t =

∫ t

0

hsds + Bε
t

=

∫ t

0

hsds +

∫ t

0

αϕε
sds + εαWt

=

∫ t

0

h̄sds + εαWt, (4.4.15)

where h̄s = hs + αϕε
s. So Y ε

t is a FW
t - semimartingale.

Consider

h̄2
s = (hs + αϕε

s)
2

≤ 2(h2
s + α2(ϕε

s)
2), (4.4.16)

then

E(h̄2
s) ≤ E[2(h2

s + α2(ϕε
s)

2)]

= 2E[h2
s] + 2α2E[(ϕε

s)
2], (4.4.17)

i.e. ∫ t

0

E(h̄2
s)ds ≤ 2

∫ t

0

E(h2
s)ds + 2α2

∫ t

0

E[(ϕε
s)

2]ds. (4.4.18)

By definition of ϕε
s from (4.2.7) and Itô Isometry property, we get

E[(ϕε
s)

2] = E
[
(

∫ s

0

(s− u + ε)α−1dWu)
2
]

=

∫ s

0

E[(s− u + ε)2(α−1)]du

=

∫ s

0

(s− u + ε)2(α−1)du

≤
∫ s

0

ε2(α−1)du

= sε2(α−1) < ∞. (4.4.19)
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It follows by Fubini’s Theorem and (4.4.18) that

E
( ∫ t

0

h̄2
sds

)
=

∫ t

0

E(h̄2
s)ds

≤ 2

∫ t

0

E(h2
s)ds + 2α2

∫ t

0

E[(ϕε
s)

2]ds

= 2E(

∫ t

0

h2
sds) + 2α2

∫ t

0

E[(ϕε
s)

2]ds. (4.4.20)

Then from assumption of ht, (4.4.19) and (4.4.20), we can see that

E

∫ t

0

h̄2
sds < ∞. (4.4.21)

We can write down the FKK (Fujisaki - Kallianpur - Kunita) equation for

the filtering problem (4.4.4) and (4.4.5) by using general filtering problem:

πε
t (f) = πε

0(f) +

∫ t

0

πε
s(H̄)ds +

∫ t

0

[πε
s(f(X)h̄)− πε

s(f(X))πε
s(h̄)]ε−αdνε

s ,

(4.4.22)

where H̄t = f ′(Xt)Ht + 1
2
f ′′(Xt), f ∈ Cb(R) and πε

0(f) = E[f(X0)|FY ε

0 ]. Notice

that from (4.4.1), we have

E|Xt| = E|X0 +

∫ t

0

Hsds + Vt|

≤ E

(
|X0|+ |

∫ t

0

Hsds|+ |Vt|
)

= E|X0|+ E|
∫ t

0

Hsds|+ E|Vt|

≤ E|X0|+ E(

∫ t

0

|Hs|ds) + E|Vt|.

It follows from Cauchy-Schwarz inequality that

E|Xt| ≤ E|X0|+ T 1/2[E

∫ t

0

H2
s ds]1/2 + E|Vt|. (4.4.23)

Notice that EVt = 0 and Vt = V +
t − V −

t imply EV +
t < ∞ and EV −

t < ∞. So

E|Vt| = E[V +
t + V −

t ] = EV +
t + EV −

t < ∞. (4.4.24)
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By (4.4.23) and (4.4.24), then

E|Xt| ≤ E|X0|+ T 1/2[E

∫ t

0

H2
s ds]1/2 + E|Vt| < ∞,

by the Levy Theorem we can see that L2− lim
ε→0

πε
t (f) exists and by Theorem 4.3.2,

then πt(f) = L2 − lim
ε→0

πε
t (f).

4.5 General Fractional Filtering

In this section, we consider a filtering problem where the signal process and

the observation process are fractional processes.

Signal process:

Xt = X0 +

∫ t

0

Hsds + B
(1)
t , 0 ≤ t ≤ T, (4.5.1)

where E|Xt| < ∞, Ht is Ft-adapted process with E

∫ t

0

H2
s ds < ∞ and

B
(1)
t =

∫ t

0

(t− s)βdUs. (4.5.2)

Observation process:

Yt =

∫ t

0

hsds + B
(2)
t , 0 ≤ t ≤ T, (4.5.3)

where ht = h(Xt) is Ft-adapted continuous process with E

∫ t

0

h2
sds < ∞ and

B
(2)
t =

∫ t

0

(t− s)αdWs, (4.5.4)

where Ut and Wt are two independent standard Brownian motions. As before, we

consider a new filtering problem (an approximate filtering problem).

Signal process:

Xε
t = X0 +

∫ t

0

Hsds + B
(1)ε
t , 0 ≤ t ≤ T, (4.5.5)
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where Ht satisfies E

∫ t

0

H2
s ds < ∞ and for every ε > 0,

B
(1)ε
t =

∫ t

0

(t− s + ε)βdUs. (4.5.6)

Observation process:

Y ε
t =

∫ t

0

hsds + B
(2)ε
t , 0 ≤ t ≤ T, (4.5.7)

where ht = h(Xε
t ) and for every ε > 0,

B
(2)ε
t =

∫ t

0

(t− s + ε)αdWs. (4.5.8)

The filter for an exact problem is defined as

πt(f) := E[f(Xt)|FY
t ], (4.5.9)

where FY
t = σ(Ys, s ≤ t) and f ∈ Cb(R). And the filter for an approximate

problem is defined as

πε
t (f) := E[f(Xε

t )|FY ε
t

t ], (4.5.10)

where f ∈ Cb(R) and FY ε

t = σ(Y ε
s , s ≤ t).

Lemma 4.5.4. Let Xn be a sequence of random variables converging to X and

|Xn| ≤ Y for all n, where Y is integrable. If (Fn) is an increasing (resp. de-

creasing) sequence of σ-algebras, then E[Xn|Fn] converges a.s to E[X|F ] where

F = σ(∪nFn) (resp. F = ∩nFn).

Proof : Take ε > 0 and put

Am = inf
k≥m

Xk, Bm = sup
k≥m

Xk, (4.5.11)

where m is chosen such that

E[Bm − Am] < ε . (4.5.12)
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For any n ≥ m we have

E[Am|Fn] = E[ inf
k≥m

Xk|Fn]

≤ E[Xn|Fn]

≤ E[sup
k≥m

Xk|Fn]

= E[Bm|Fn]. (4.5.13)

By Levy’s Theorem, we get that E[Am|Fn] → E[Am|F ] a.s. and E[Bm|Fn] →
E[Bm|F ] a.s.. Notice that, for any n ≥ m, Am ≤ Xn ≤ Bm implies

E[Am|F ] = lim
n→∞

E[Am|Fn]

= lim inf
n→∞

E[Am|Fn]

≤ lim inf
n→∞

E[Xn|Fn] (4.5.14)

E[Bm|F ] = lim
n→∞

E[Bm|Fn]

= lim sup
n→∞

E[Bm|Fn]

≥ lim sup
n→∞

E[Xn|Fn] (4.5.15)

By using (4.5.14)-(4.5.15), we obtain

E[Am|F ] ≤ lim inf
n→∞

E[Xn|Fn] ≤ lim sup
n→∞

E[Xn|Fn] ≤ E[Bm|F ]. (4.5.16)

It follows from (4.5.12) that

E
[
E[Bm|F ]− E[Am|F ]

]
= E

[
E[Bm|F ]

]− E
[
E[Am|F ]

]

= E[Bm]− E[Am]

= E[Bm − Am] < ε. (4.5.17)

Using (4.5.16) and (4.5.17), we get

E
[
lim sup

n→∞
E[Xn|Fn]− lim inf

n→∞
E[Xn|Fn]

] ≤ ε. (4.5.18)
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This shows that limn→∞ E[Xn|Fn] exist. So from the existent of this limit and

(4.5.16), then

E[Am|F ] ≤ lim
n→∞

E[Xn|Fn] ≤ E[Bm|F ]. (4.5.19)

It follows from (4.5.19) that

lim
m→∞

E[Am|F ] ≤ lim
n→∞

E[Xn|Fn] ≤ lim
m→∞

E[Bm|F ]. (4.5.20)

Note that limm→∞ Am = limm→∞ Bm implies that

E[ lim
m→∞

Am|F ] = E[ lim
m→∞

Bm|F ] (4.5.21)

Using Fubini’s theorem, we have

lim
m→∞

E[Am|F ] = lim
m→∞

E[Bm|F ] (4.5.22)

It follows from (4.5.20) and (4.5.22) that

lim
m→∞

E[Am|F ] = lim
n→∞

E[Xn|Fn] = lim
m→∞

E[Bm|F ]. (4.5.23)

On the other hand, the inequality Am ≤ X ≤ Bm implies

E[Am|F ] ≤ E[X|F ] ≤ E[Bm|F ] (4.5.24)

And then

lim
m→∞

E[Am|F ] ≤ E[X|F ] ≤ lim
m→∞

E[Bm|F ] (4.5.25)

It follows from (4.5.22) and (4.5.25) that

lim
m→∞

E[Am|F ] = E[X|F ] = lim
m→∞

E[Bm|F ]. (4.5.26)

By (4.5.23) and (4.5.26), we have lim
n→∞

E[Xn|Fn] = E[X|F ] or E[Xn|Fn] →
E[X|F ] a.s.

This Lemma still holds if we replace the a.s. convergence by the L2- con-

vergence.



67

Theorem 4.5.5. The filter πt(f) = E[f(Xt)|FY
t ] is determined by

πt(f) = L2 − lim
ε→0

πε
t (f), f ∈ Cb(R) (4.5.27)

where πε
t (f) satisfies the following filtering equation

πε
t (f) = πε

0(f) +

∫ t

0

πε
s(

¯̄H)ds +

∫ t

0

[πε
s(f(X)h̄)− πε

s(f(X))πε
s(h̄)]ε−αdνε

s , (4.5.28)

where

¯̄Ht = f ′(Xε
t )H̄t +

ε2β

2
f ′′(Xε

t ) (4.5.29)

H̄t = Ht + βψε
t , ψε

t =

∫ t

0

(t− s + ε)β−1dUs (4.5.30)

h̄t = ht + αϕε
t , ϕε

t =

∫ t

0

(t− s + ε)α−1dWs (4.5.31)

νε
t =

1

εα
[Y ε

t −
∫ t

0

πε
s(h̄)ds], (4.5.32)

Proof : It follows from the definition of Xε
t in (4.5.5), Xt in (4.5.1) and from

Theorem 4.2.1 that

Xε
t = X0 +

∫ t

0

Hsds + B
(1)ε
t

→ X0 +

∫ t

0

Hsds + B
(1)
t

= Xt, (4.5.33)

i.e. Xε
t → Xt in L2(Ω,F , P ) as ε → 0. As for Y ε

t , from (4.5.3) and (4.5.7) we can

see that

Y ε
t − Yt =

( ∫ t

0

h(Xε
s )ds + B

(2)ε
t

)− ( ∫ t

0

h(Xs)ds + B
(2)
t

)

=

∫ t

0

(
h(Xε

s )− h(Xs)
)
ds +

(
B

(2)ε
t −B

(2)
t

)
, (4.5.34)

where h : R → R is a continuous function by assumption. The L2(Ω,F , P )-

convergence of B
(2)ε
t and Xε

t respectively to B
(2)
t and Xt respectively, imply that

Y ε
t → Yt in L2(Ω,F , P ) as ε → 0.
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It follows from (4.5.7) and (4.2.8)

Y ε
t =

∫ t

0

hsds + B
(2)ε
t

=

∫ t

0

hsds +

∫ t

0

αϕε
sds + εαWt

=

∫ t

0

h̄sds + εαWt, (4.5.35)

where h̄s = hs + αϕε
s. So Y ε

t is a FW
t - semimartingale.

Consider

h̄2
s = (hs + αϕε

s)
2

≤ 2(h2
s + α2(ϕε

s)
2), (4.5.36)

then

E(h̄2
s) ≤ E[2(h2

s + α2(ϕε
s)

2)]

= 2E[h2
s] + 2α2E[(ϕε

s)
2], (4.5.37)

i.e. ∫ t

0

E(h̄2
s)ds ≤ 2

∫ t

0

E(h2
s)ds + 2α2

∫ t

0

E[(ϕε
s)

2]ds. (4.5.38)

By definition of ϕε
s from (4.5.31) and Itô Isometry property, we get

E[(ϕε
s)

2] = E
[
(

∫ s

0

(s− u + ε)α−1dWu)
2
]

=

∫ s

0

E(s− u + ε)2(α−1)du

=

∫ s

0

(s− u + ε)2(α−1)du

≤
∫ s

0

ε2(α−1)du

= sε2(α−1) < ∞. (4.5.39)
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It follow by Fubini Theorem and (4.5.38) that

E
( ∫ t

0

h̄2
sds

)
=

∫ t

0

E(h̄2
s)ds

≤ 2

∫ t

0

E(h2
s)ds + 2α2

∫ t

0

E[(ϕε
s)

2]ds

= 2E(

∫ t

0

h2
sds) + 2α2

∫ t

0

E[(ϕε
s)

2]ds. (4.5.40)

Then from assumption of ht, (4.5.39) and (4.5.40), we can see that

E

∫ t

0

h̄2
sds < ∞. (4.5.41)

It follows from (4.5.5) and (4.2.8)

Xε
t = X0 +

∫ t

0

Hsds + B
(1)ε
t

= X0 +

∫ t

0

Hsds +

∫ t

0

βψε
sds + εβUt

= X0 +

∫ t

0

H̄sds + εβUt, (4.5.42)

where H̄s = Hs + βψε
s. So Xε

t is a FW
t - semimartingale.

Consider

H̄2
s = (Hs + βψε

s)
2

≤ 2(H2
s + β2(ψε

s)
2), (4.5.43)

then

E(H̄2
s ) ≤ E[2(H2

s + β2(ψε
s)

2)]

= 2E[H2
s ] + 2β2E[(ψε

s)
2], (4.5.44)

i.e. ∫ t

0

E(H̄2
s )ds ≤ 2

∫ t

0

E(H2
s )ds + 2β2

∫ t

0

E[(ψε
s)

2]ds. (4.5.45)
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By definition of ψε
s from (4.5.30) and Itô Isometry property, we get

E[(ψε
s)

2] = E
[
(

∫ s

0

(s− u + ε)β−1dUu)
2
]

=

∫ s

0

E(s− u + ε)2(β−1)du

=

∫ s

0

(s− u + ε)2(β−1)du

≤
∫ s

0

ε2(β−1)du

= sε2(β−1) < ∞. (4.5.46)

It follow by Fubini Theorem and (4.5.45) that

E
( ∫ t

0

H̄2
s ds

)
=

∫ t

0

E(H̄2
s )ds

≤ 2

∫ t

0

E(H2
s )ds + 2β2

∫ t

0

E[(ψε
s)

2]ds

= 2E(

∫ t

0

H2
s ds) + 2β2

∫ t

0

E[(ψε
s)

2]ds. (4.5.47)

Then from assumption of Ht, (4.5.46) and (4.5.47), we can see that

E

∫ t

0

H̄2
s ds < ∞. (4.5.48)

We have a new approximate filtering problem:

Signal process:

Xε
t = X0 +

∫ t

0

H̄sds + εβUt. (4.5.49)

Observation process:

Y ε
t =

∫ t

0

h̄sds + εαWt, (4.5.50)

where

H̄t = Ht + βψε
t , ψε

t =

∫ t

0

(t− s + ε)β−1dUs,

h̄t = ht + αϕε
t , ϕε

t =

∫ t

0

(t− s + ε)α−1dWs.
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and the innovation process:

νε
t =

1

εα
[Y ε

t −
∫ t

0

πε
s(h̄)ds]. (4.5.51)

We can write the FKK filtering equation for the approximate model (4.5.49)

and (4.5.50) as

πε
t (f) = πε

0(f) +

∫ t

0

πε
s(

¯̄H)ds +

∫ t

0

[πε
s(f(X)h̄)− πε

s(f(X))πε
s(h̄)]ε−αdνε

s . (4.5.52)

where

¯̄Ht = f ′(Xε
t )H̄t +

ε2β

2
f ′′(Xε

t ) (4.5.53)

Because Xε
t → Xt and Y ε

t → Yt in L2(Ω,F , P ) and FY ε
t

t ↘ FY
t as ε → 0, then by

virtue of Lemma 4.5.4 we have

πt(f) = L2 − lim
ε→0

πε
t (f) (4.5.54)



CHAPTER V

APPLICATION FOR FINANCIAL MODEL OF

ORNSTEIN-UHLENBECK PROCESS

In this chapter, some financial filtering models are studied. The results

of filtering for Ornstein-Uhlenbeck process from point process observation from

Chapter III are applied to the study of the volatility in asset pricing and term

structure models for interest rates such as Vasiček model and Hull-White model.

5.1 A Filtering Problem for the Volatility Model

In this section, we consider filtering problem for the volatility Σt model

which can be represented by

d(ln Σt) = −α(ln Σt)dt + γdWt. (5.1.1)

Set Xt = ln Σt. Hence f(Xt) = eXt = Σt. Next, we consider the filtering

problem.

Signal process:

dXt = −αXtdt + γdWt. (5.1.2)

Observation process:

dSt = h(Xt)dt + dMt. (5.1.3)

From the results of Theorem 3.4.25 and Theorem 3.4.26, we obtain the

following theorems.
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Theorem 5.1.1. The filter of the filtering problem for the volatility model in

(5.1.2)-(5.1.3)is given by one of two following equations:

(a) πt(Σ) = π0(Σ) +

∫ t

0

πs

(
− αΣ ln(Σ) +

γ2

2α
Σ

)
ds

+

∫ t

0

π−1
s (h){πs−(hΣ)− πs−(Σ)πs(h)}dms,

(b) πt(Σ) = π0(PtΣ) +

∫ t

0

π−1
s (h){πs−(hPt−sΣ)− πs−(Pt−sΣ)πs(h)}dms,

where mt = St −
∫ t

0

π(hs)ds and Pt is given by

(PtΣ)(x) = E
[
exp

(
e−αtx +

γ2

2α

√
1− e−2αtY

)]
.

Theorem 5.1.2. The quasi-filter of the filtering problem for the volatility model

in (5.1.2)-(5.1.3) is given by one of two following equations:

(a) σt(Σ) = σ0(Σ) +

∫ t

0

σs

(
− αΣ ln(Σ) +

γ2

2α
Σ

)
ds

+

∫ t

0

{σs−(hf)− σs−(f)}dµs,

(b) σt(Σ) = σ0(PtΣ) +

∫ t

0

{σs−(hPt−sΣ)− σs−(Pt−sΣ)}dµs.

where µt = St − t and

(PtΣ)(x) = E
[
exp

(
e−αtx +

γ2

2α

√
1− e−2αtY

)]
.

5.2 A Filtering Problem for the Vasiček Model

The term structure for the Vasiček model which given by the following

equation

drt = (b− art)dt + γWt,

where rt is the interest rate, a, γ are positive constants and b is any real number.
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Given Xt = art− b, then f(Xt) =
Xt + b

a
= rt. Now we study the following

filtering problem:

Signal process:

dXt = −aXtdt + aγdWt. (5.2.4)

Observation process:

dSt = h(Xt)dt + dMt. (5.2.5)

It follows from Theorem 3.4.25 and Theorem 3.4.26 that

Theorem 5.2.3. The filter of the filtering problem for the Vasiček model in

(5.2.4)-(5.2.5) is given by one of two following equations:

(a) πt(r) = π0(r) +

∫ t

0

πs(b− ar)ds

+

∫ t

0

π−1
s (h){πs−(hr)− πs−(r)πs(h)}dms,

(b) πt(r) = π0(Ptr) +

∫ t

0

π−1
s (h){πs−(hPt−sr)− πs−(Pt−sr)πs(h)}dmt,

where mt = St −
∫ t

0

π(hs)ds and Pt is given by

(Ptr)(x) = E
[
exp

(
e−atx +

aγ2

2

√
1− e−2atY

)]
.

Theorem 5.2.4. The quasi-filter of the filtering problem for the Vasiček model in

(5.2.4)-(5.2.5) is given by one of two following equations:

(a) σt(r) = σ0(r) +

∫ t

0

σs(b− ar)ds +

∫ t

0

{σs−(hr)− σs−(r)}dµs,

(b) σt(r) = σ0(Ptr) +

∫ t

0

{σs−(hPt−sr)− σs−(Pt−sr)}dµs.

where µt = St − t and

(Ptr)(x) = E
[
exp

(
e−atx +

aγ2

2

√
1− e−2atY

)]
.
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5.3 A Filtering Problem for the Hull-White Model

Here we consider the Hull-White model for interest rate rt given by

drt = (b(t)− a(t)rt)dt + γ(t)dWt, (5.3.6)

where a(t), b(t) and γ(t) are deterministic continuous functions of t with a(t) > 0

and γ(t) > 0.

Let Xt = a(t)rt − b(t), then f(Xt) =
Xt + b(t)

a(t)
= rt. Next we establish the

following filtering problem.

Signal process:

dXt = −a(t)Xtdt + a(t)γ(t)dWt. (5.3.7)

Observation process:

dSt = h(Xt)dt + dMt. (5.3.8)

By using Theorem 3.4.25 and Theorem 3.4.26, we found the filtering and

quasi-filtering equations for the Hull-White model as the following theorems.

Theorem 5.3.5. The filter of the filtering problem for the Hull-White model in

(5.3.7)-(5.3.8) is given by one of two following equations:

(a) πt(r) = π0(r) +

∫ t

0

πs(b(t)− a(t)r)ds

+

∫ t

0

π−1
s (h){πs−(hr)− πs−(r)πs(h)}dms,

(b) πt(r) = π0(Ptr) +

∫ t

0

π−1
s (h){πs−(hPt−sr)− πs−(Pt−sr)πs(h)}dmt,

where mt = St −
∫ t

0

π(hs)ds and Pt is given by

(Ptr)(x) = E
[
exp

(
e−a(t)tx +

a(t)γ2(t)

2

√
1− e−2a(t)tY

)]
.
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Theorem 5.3.6. The quasi-filter of the filtering problem for the Hull-White model

in (5.3.7)-(5.3.8) is given by one of two following equations:

(a) σt(r) = σ0(r) +

∫ t

0

σs(b(t)− a(t)r)ds +

∫ t

0

{σs−(hr)− σs−(r)}dµs,

(b) σt(r) = σ0(Ptr) +

∫ t

0

{σs−(hPt−sr)− σs−(Pt−sr)}dµs,

where µt = St − t and

(Ptr)(x) = E
[
exp

(
e−a(t)tx +

a(t)γ2(t)

2

√
1− e−2a(t)tY

)]
.



CHAPTER VI

CONCLUSIONS

In this thesis, we have studied some stochastic filtering problems that can

be applied to finance. The main results of this thesis are divided into two parts.

The first part is the stochastic filtering problem with point process observation,

While the second part is the stochastic fractional filtering problem.

An observation in reality can be made only at discrete times so the obser-

vation process is a stochastic process of discrete times. In general, the observation

can be made at random times. So a point process is used as an observation process.

In the first part, a stochastic filtering problem with semimartingale signal process

and observation process given by a point process is studied. The advantage of the

representation of a martingale as an integral with respect to the innovation process

is that stochastic calculus can be used to attain the filtering equation. By using

reference probability and Bayes formula, the quasi-filtering equation is obtained.

After that a Feller process and an Ornstein-Uhlenbeck process are used as a signal

processes.

Many financial processes can be perturbed not only by white noise as a

Brownian motion but also by a fractional process such as a fractional Brownian

motion. So fractional filtering is needed in finance. In the second part, a fractional

filtering with fractional observation process is studied in three cases. First, a

general signal process is considered. Second, a semimartingale signal process is

studied. Finally, a fractional signal process is examined. The convergence of a

semimartingale Bε
t and general stochastic filtering theorem are used for the proof
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of the fractional filtering equation.

Apart from these results, the Thesis includes also some applications of

filtering problem with point process observation to estimate the volatility in asset

pricing models as well as in term structure models such as those of Vasiček and

Hull-White.

The author hopes that various practical problems arising in financial mar-

kets can be found solutions via the methods and results presented in this Thesis.
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