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In risk theory, insurance premiums are calculated from a model using claim

data which can be constructed in two dimensions with one dimension representing

time and the other representing distinct insured individuals. Several models found in

the literature allow for independence assumptions across different risks for the sake

of convenience and mathematical tractability. However, these assumptions may be

violated in some practical situations. In this thesis, modelling claim dependence is built

under the common effect in the framework for investigating the Bayesian Premium. The

study is separated into two parts.

In the first part, model descriptions and preliminaries are introduced. We study

the basic properties of some types of premiums corresponding to the model.

In the second part, we derive some results in order to find the Bayesian premium

under square-error loss function for arbitrary distributions of both claim amounts and

common effect. We also establish the Bayesian premiums for lognormal and normal

claim amount distributions while the common effect of both are normally distributed.

As an application of this part, we illustrate how the common effect influences

the Bayesian premiums by using an actual motor insurance positive claim data set of
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1,296 observations for the year 2009. These data were supplied by a non-life insurance

company in Thailand.
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CHAPTER I

INTRODUCTION

One crucial task both in the practical management of an insurance company

and in theoretical considerations is to determine premiums adequate to cover all risks.

These premiums are calculated based on the chosen model, information in the insurance

contract (e.g. claim experience), and a loss function which in mathematical terms

belongs to the area of Bayesian statistics.

It is a common practice to group individual risks, so that the risks within each

group are as homogeneous as possible, in order to reach a fair and equitable premium

across all individuals. A collective premium, also know as the manual premium, is then

calculated and charged for this group. But in reality, not all risks in any general class

are truly homogeneous. No matter how detailed the underwriting procedure, there still

remains some heterogeneity with respect to risk characteristics within a rating class.

In risk theory, each risk X for an individual is characterized by a risk parameter

θ (possibly vector valued) due to the heterogeneity over policies in the concerned

portfolio being examined. All values θ associated with each risk are modeled by the

random variable Θ. Let Π(θ) be the cumulative distribution function of Θ and assume

that the density of the random variable Θ exists and is denoted by π(θ). The function

π(θ) is referred to as a structure function in actuarial studies and prior distribution in

statistical theory. In order to predict a possible future loss for the risk X, we require

a sequence of historical claims including accurately summarized information from the

observed data to estimate the distribution π(θ).
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1.1 Claim Dependence Modelling

There have been many studies of modelling the structure of claims which is an

essential part of insurance pricing. In this section, an overview of the literature on claim

dependence modelling is presented which leads to the purpose of the study.

In the process of modelling claims structure, many studies assume independence

of claims which may be appropriate in some practical situations, including mathemati-

cal tractability. However, in real applications, there are some situations in which these

assumptions may be violated; for example, in house insurance where geographic prox-

imity of the insured may result in exposure to a common catastrophe, and in motor

insurance where one collision may involve several insured parties.

The concept of modelling dependence began with a consideration of time de-

pendence, but not of dependence across individuals. An early paper by Gerber and

Jones (1975) and a paper by Frees et al. (1999) are examples of credibility models with

time dependence for claims. Heliman (1986) and Hürliman (1993) have investigated

the effect of dependencies of risks on stop-loss premiums. Wang (1998) proposed a set

of statistic tools for modelling dependencies of risks in an insurance portfolio. Purcaru

and Denuit (2002) provided a kind of dependence for claim frequency induced by in-

troducing common latent variables in the annual numbers of claims reported by several

policyholders. Several generalizations and alternative models of dependence have been

suggested; however, in the context of credibility pricing, dependence over individuals

has not received adequate attention from researchers and practitioners so far. However,

in 2006, Yeo and Valdez investigated dependence over individuals by using common

effects in a framework for developing credibility premiums. They used two-level com-

mon effects to describe the dependence structure of claims across individuals for a fixed

time period and across time periods for a fixed individual. They further investigated

credibility premiums when the claims are assumed to be normally distributed. There

have been many remarkable efforts in the literature to study the dependence structure
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across individuals induced by common effects, e.g., Went et al. (2009) and H. Weizhong

et al. (2012). Both of these groups pursued a variation from the work of Yeo and Valdez

(2006). They extended the Bühlmann and Bühlmann-Straub credibility models with a

dependence structure induced by common effects and derived corresponding credibility

estimators.

In this thesis, we study the problem of dependence over individuals by using the

one-level common effect in the framework for calculating the Bayesian premium. In

addition, we are interested in the situation where claim amounts are lognormally dis-

tributed. This distribution is often used to describe the features of heavy-tailed claim

amounts.

1.2 Concept of Insurance Premiums

An insurance premium is composed of a pure premium and the necessary load-

ing. The pure premium of the insured loss is defined as the expected value of the claim

amounts to be paid by the insurer. In practice, the insurer will add a risk (loss) loading

to the pure premium. The sum of the pure premium and the loss loading is called the

net premium. Adding the acquisition, expenses, and administration costs to this net

premium, one obtains the gross premium that will be charged to the insured or policy-

holder. In this thesis, I shall consider only the pure premium. Next, we briefly review

some concepts of premium calculation principles which relate to insurance premiums

(more details in section (2.4)).

A premium calculation principle is a functional that assigns a real number, the

premium, to any risk X (with probability function fX|Θ(x|θ), where x takes value in

the sample space X and θ is considered to be a realization of a parameter space Θ).

Let L : R2 → R be a loss function that assigns to any (x, P ) ∈ R2 the loss sustained

by a decision maker who takes the action P , the premium charged, and is faced with

the outcome x of a random experiment. P (X) must be determined such that the
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expected loss is minimized, i.e., the minimum point of the mapping P −→ E[L(X,P )]

must be found. In risk theory many loss functions are used: the quadratic loss function

gives the net premium principle, the exponential loss function results in the exponential

principle, etc.

In this study, we are interested in the Bayesian premiums used to predict ex-

pected claims given the history of all observable claims. It is well-known that this

conditional expectation actually gives the best predictor of the next period claim for

a single individual under the mean-squared error loss function (see Klugman, 1992).

More specifically, let X⃗i = (Xi,1, Xi,2, . . . , Xi,T )
′
be the random vector representing the

vector of claims for a particular individual i = 1, 2, . . . , I within T time periods. Define

a subspace H of L2(F) ( the Hilbert space for all random variables having finite second

moment) by

H := L2(σ(X⃗1, X⃗2, . . . , X⃗I)).

Since H is clearly a closed subspace of L2(F), then for a fixed i = 1, 2, . . . , I, the

projection theorem in Hilbert space yields the unique existence of p∗i ∈ H satisfying

E[(Xi,T+1 − p∗i )
2] = inf

p∈H
E[(Xi,T+1 − p)2].

The solution p∗i satisfies p∗i = E[Xi,T+1|X⃗] and is known as the Bayesian premium for

risk X⃗i.

1.3 Scope of Research

This thesis studies how to derive an explicit formula of the Bayesian premium

under mean-squared error loss function in a claims dependence model. For this purpose,

I begin with proposing the claims dependence model and then investigate the Bayesian

premium with the assumption that claim amounts have known probability function.

There are many tools in mathematics that could be used to model claim de-

pendencies; for example, the concept of copulas. Although copulas offer the flexibility

of dependent random variables, they offer very limited mathematical tractability. In



5

this thesis, I use only the common effect (in the terminology of Yeo and Valdez, 2006)

to describe the dependency of claims. This concept can allow, besides the intuitive

appeal, mathematical tractability in modelling claim dependencies. However, copula

models are still appropriate tools and may be explored in future work.

When considerating of claim amounts distributions, we restrict our discussion

to lognormal and normal claim amount distributions. As for the distribution of the

common effect, we study only normal common effect distributions.

1.4 Objective and Overview of the Thesis

The aim of this thesis is to study a model of claim dependence which includes the

concept of common effect across individual risks in its framework, in order to investigate

Bayesian premiums with some well-know claim amounts distributions. The thesis is

organized as follows.

In Chapter II, we introduce some notations, terminologies, some mathematical

tools and statistical background which are used in Chapters III and IV.

In Chapter III, model descriptions and background are introduced. We also

derive some results in order to find the Bayesian premium under the square-error loss

function.

Chapter IV establishes the Bayesian premiums for lognornal and normal claim

amounts distributions when the common effects of both are normally distributed. In

addition, we find the Bayesian premium under normal claim amounts distribution is in

credibility formula.

In Chapter V, we apply our model to an actual data set of claims which has been

supplied by a non-life insurance public company in Thailand, in order to demonstrate

the process of calculating the Bayesian premium and illustrate how the common effect

influences the premium.

Conclusions, discussion and further research are shown in Chapter VI.



CHAPTER II

PRELIMINARIES

This chapter introduces the concepts and theories of some mathematical and

statistic materials which are useful for the claim dependence modelling and insurance

pricing, and provides some terminologies including the background information on in-

surance premiums.

2.1 Random Variables

By definition, a random variable X is a function whose domain is a sample space

and whose range is a subset of the real numbers. In actuarial science, the actuary

deals with objects such as random variables. For example, taking samples of insurance

portfolio X might represent the number of annual claims, or the amount of annual claim

for a policyholder associated with the occurrence of an automobile accident.

The notation X(s) = x means that x is the value associated with the outcome s

by the random variable X.

There are three types of random variables: discrete random variables, continuous

random variables, and mixed random variables.

A discrete random variable is usually the result of a count and therefore the

range consists of integers. A continuous random variable is usually the result of a

measurement. As a result the range is any subset of the set of all real numbers. A

mixed random variable is partially discrete and partially continuous.
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2.2 Distribution Function

In probability theory and statistics, the cumulative distribution function (CDF),

or just distribution function, describes the probability that a real-valued random vari-

able X will have a value less than or equal to x. For example, let X be a random

variable representing the total claim amount generated by some policyholder. Then the

cumulative distribution function of X is the probability that this policyholder produces

a total claim amount of at most x. The distribution function is important because it

makes sense for any type of random variable, regardless of whether the distribution is

discrete, continuous, or even mixed.

Definition 2.1. Let (Ω,F ,P) be a probability space. The (cumulative) distribution

function of a random variable X is defined by

FX(x) = P{ω ∈ Ω ; X(ω) ≤ x}

Using the abbreviated notation, we shall typical write the less explicit expression

FX(x) = P{X ≤ x}

for the distribution function.

Properties of distribution function

(i) FX is non-decreasing (x1 ≤ x2 implies FX(x1) ≤ FX(x2));

(ii) lim
x→∞

FX(x) = 1, lim
x→−∞

FX(x) = 0;

(iii) FX is right continuous ( limh→0+ F (x+ h) = F (x) for all x ∈ R).

Definition 2.2. A random variable X is called discrete if it takes values in some

countable subset {x1, x2, . . .} of R. The discrete random variable X has probability

mass function (PMF), f : R −→ [0, 1] given by

f(x) = P{X = x}.
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Definition 2.3. A random variable X is called continuous if its distribution function

can be expressed as

F (x) =

∫ x

−∞
f(u)du ; x ∈ R,

for some nonnegative integrable function f : R −→ [0,∞). The function f is called the

probability density function (PDF) of X.

Notice that there exist distributions that are neither continuous nor discrete.

2.2.1 Normal Distribution

The normal distribution is the most widely known and used of all distributions.

Because the normal distribution approximates many natural phenomena very well, it

has developed into a standard of reference for many probability problems.

Assume that a random variable X has the normal distribution with parameters

µ and σ2, abbreviated X ∼ N(µ, σ2). Then we have

(1) Cumulative distribution function (CDF) : F (x) = Φ(x−µ
σ

) where

Φ(z) =
1√
2π

∫ z

−∞
e

−t2

2 dt,

is the area under the ”Bell curve function” ( 1√
2π
)e

−t2

2 between −∞ to z.

(2) Probability density function (PDF) :

f(x) =
1

σ
√
2π

e−
1
2
(x−µ

σ
)2 , −∞ < x < ∞.

(3) Expectation : E[X] = µ.

(4) Variance : var(X) = σ2.

(5) Moment-generating function : MX(t) = E[etX ] = eµt+
1
2
σ2t2 .
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2.2.2 Lognormal Distribution

The lognormal distribution is useful as a model for the claim size distribution.

A random variable X is said to have the lognormal distribution with parameters µ and

σ2 if Y = lnX has the normal distribution with mean µ and standard deviation σ. A

random variable which is lognormally distributed takes only positive real values.

Assume that a random variable X has the lognormal distribution with parame-

ters µ and σ2, abbreviated X ∼ LN(µ, σ2). Then we have

(1) Cumulative distribution function (CDF) : F (x) = Φ( lnx−µ
σ

); µ ∈ R, σ >

0, x > 0 where

Φ(z) =
1√
2π

∫ z

−∞
e

−t2

2 dt.

(2) Probability density function (PDF) :

f(x) =
1

xσ
√
2π

e−
1
2
( lnx−µ

σ
)2 .

(3) Expectation : E[X] = eµ+
σ2

2 .

(4) Variance : var(X) = (eσ
2 − 1)e2µ+σ2

.

(5) Moment-generating function : MX(t) = E[eXt] = ∞ for any t > 0.

Summary of the Propositions

Proposition 2.1. If X is N(µ, σ2) then aX + b is N(aµ+ b, a2σ2).

Proposition 2.2. If X is N(µ1, σ
2
1) and Y is N(µ2, σ

2
2), and X and Y are independent,

then X + Y is N(µ1 + µ2, σ
2
1 + σ2

2).

Corollary 2.3. If Xi are independent N(µ, σ2) for i = 1, 2, . . . , n then
∑n

i=1Xi is

N(nµ, nσ2).

Corollary 2.4. If Yi are independent LN(µ, σ2) for i = 1, 2, . . . , n then Πn
i=1Yi is

LN(nµ, nσ2).
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Figure 2.1 The PDF of lognormal distribution with parameters (µ, σ2) in case of µ = 0.

2.3 Properties of Expectation

The expected value of a random variable is the weighted average of the possible

values of random variable X and also is the center of the distribution of the variable.

Definition 2.4. Let X be a discrete random variable with probability mass function

p(x). The expected value of X is given by

E(X) =
∑
x

xp(x)

provided that the sum is finite.

For a continuous random variable X with probability density function f(x), the ex-

pected value is given by

E[X] =

∫ ∞

−∞
xf(x)dx

provided that the improper integral is convergent.

2.3.1 Expected value of a Function of two Random Variables

In this subsection, we introduce some equalities and inequalities about the ex-

pectation of random variables. First, we introduce the definition of expectation of a
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function of two random variables.

Definition 2.5. Suppose that X and Y are two random variables taking values in SX

and SY respectively. For a function g : SX × SY → R the expected value of g(X,Y ) is

E[g(X,Y )] =
∑
x∈SX

∑
y∈SY

g(x, y)pXY (x, y)

if X and Y are discrete with joint probability mass function pX,Y (x, y) and

E[g(X, Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y)dxdy

if X and Y are continuous with joint probability density function fX,Y (x, y).

An important application of the above definition is the following result.

Proposition 2.5. The expected value of the sum/difference of two random variables is

equal to the sum/difference of their expectations. That is,

E[X + Y ] = E[X] + E[Y ]

and

E[X − Y ] = E[X]− E[Y ].

Proof. We proof the result for discrete random variables X and Y with joint probability

mass function pX,Y (xy). Letting g(X,Y ) = X ± Y we have

E[X ± Y ] =
∑
x

∑
y

(x± y)pXY (x, y)

=
∑
x

∑
y

xpXY (x, y)±
∑
x

∑
y

ypXY (x, y)

=
∑
x

x
∑
y

pXY (x, y)±
∑
x

y
∑
y

pXY (x, y)

=
∑
x

xp(x)±
∑
y

yp(y)

= E[X]± E[Y ].

A similar proof holds for the continuous case where we just need to replace the sums

by improper integrals and the joint probability mass function by the joint probability

density function.
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Proposition 2.6. Let X be nonnegative random variable, then E[X] ≥ 0. Suppose X

and Y are two random variables such that X > Y . Then E[X] ≥ E[Y ].

Proof. We proof the result for the continuous case. We have

E[X] =

∫ ∞

−∞
xf(x)dx

=

∫ ∞

0

xf(x)dx ≥ 0

since f(x) ≥ 0 so the integrand is nonnegative. Now, if X ≥ Y then X −Y ≥ 0 so that

by the previous preposition we can write

E[X]− E[Y ] = E[X − Y ] ≥ 0.

This concludes the proof.

Proposition 2.7. If X and Y are independent random variables then for any function

h and g we have

E[g(X)h(Y )] = E[g(X)]E[h(Y )].

In particular, E[XY ] = E[X]E[Y ].

Proof. We proof the result for the continuous case. The proof of the discrete case is

similar. Let X and Y be two independent random variables with joint density function

fX,Y (x, y). Then

E[g(X)h(X)] =

∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)fX,Y (x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)fX(x)fY (y)dxdy

=
(∫ ∞

−∞
g(x)fX(x)dx

)(∫ ∞

−∞
h(y)fY (y)dy

)
= E[g(X)]E[h(Y )].

We note that the expected values need not multiply if the random variables are

not independent.
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2.3.2 Conditional Expectation

Since conditional probability measures are probability measures (that is, they

possess all of the properties of unconditional probability measures), conditional expec-

tations inherit all of the properties of regular expectations.

Definition 2.6. Let X and Y be random variables. In the discrete case, the conditional

expectation of X given that Y = y is defined by

E[X|Y = y] =
∑
x

xP (X = x|Y = y)

=
∑
x

xpX|Y (x|y)

where pX|Y is the conditional probability mass function of X, given that Y = y which

is given by

pX|Y (x|y) = P (X = x|Y = y) =
pX,Y (x, y)

pY (y)
.

This is defined for non-zero pY (y).

In the continuous case we have

E[X|Y = y] =

∫ ∞

−∞
xfX|Y (x|y)dx

where

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.

Also in this case it necessary that fY (y) > 0.

For any function g(x), the conditional expected value of g given Y = y is, in the

continuous case,

E[g(X)|Y = y] =

∫ ∞

−∞
g(x)fX|Y (x|y)dx

if the integral exists. For the discrete case, we have a sum instead of an integral. That

is, the conditional expectation of g given Y = y is

E[g(X)|Y = y] =
∑
x

g(x)pX|Y (x|y).

The proof of this result is identical to the unconditional case.
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Theorem 2.8. (Double Expectation Property)

Let X and Y be random variables. Then

E[X] = E[E[X|Y ]].

Proof. We proof the result for the case X and Y are continuous random variables.

E[E[X|Y ]] =

∫ ∞

−∞
E[X|Y = y]fY (y)dy

=

∫ ∞

−∞

(∫ ∞

−∞
xfX|Y (x|y)dx

)
fY (y)dy

=

∫ ∞

−∞

∫ ∞

−∞
xfX|Y (x|y)dxfY (y)dy

=

∫ ∞

−∞
x

∫ ∞

−∞
fX|Y (x|y)fY (y)dydx

=

∫ ∞

−∞
xfX(x)dx

= E[X].

Definition 2.7. (The Conditional Variance)

Let X and Y be random variables. The conditional variance of X given Y is defined by

V ar(X|Y = y) = E[(X − E[X|Y ])2|Y = y].

Note that the conditional variance is a random variable since it is a function of

Y .

Proposition 2.9. Let X and Y be random variables. Then

(a) V ar(X|Y ) = E[X2|Y ]− (E[X|Y ])2

(b) E[var(X|Y )] = E[E[X2|Y ]− (E[X|Y ])2] = E[X2]− E[(E[X|Y ])2]

(c) V ar(E[X|Y ]) = E[(E[X|Y ])2]− (E[X])2

(d) Law of Total Variance : V ar(X) = E[V ar(X|Y )] + V ar(E[X|Y ]).
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Proof. (a) we have

V ar(X|Y ) = E[(X − E[X|Y ])2|Y ]

= E[(X2 − 2XE[X|Y ]) + (E[X|Y ])2|Y ]

= E[X2|Y ]− 2E[X|Y ]E[X|Y ] + (E[X|Y ])2

= E[X2|Y ]− (E[X|Y ])2.

(b) Taking E of both sides of the result in (a) we find

E[V ar(X|Y )] = E[E[X2|Y ]− (E[X|Y ])2]

= E[X2]− E[(E[X|Y ])2].

(c) Since E[E[X|Y ]] = E[X] we have

V ar(E[X|Y ]) = E[(E[X|Y ])2]− (E[X|Y ])2.

(d) The result follows by adding the two equations in (b) and (c).

2.4 Premium Calculation and Insurance Pricing

The price of insurance is the monetary value for which two parties agree to

exchange risk and certainty. There are two commonly encountered situations in which

the price of insurance is the subject of consideration: when an individual agent (for

example, a household), bearing an insurance risk, buys insurance from an insurer at

an agreed periodic premium; and when insurance portfolios (that is, a collection of

insurance contracts) are traded in the financial industry (e.g., being transferred from

an insurer to another insurer or from insurer to the financial market (securitization).

Pricing in the former situation is usually referred to as premium calculation while

pricing in the latter situation is usually referred to as insurance pricing, although such

a distinction is not unambiguous.

We first mention the concepts of risk and refer to premium calculation principle

later. These definitions are stated as follows.
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Definition 2.8 (Fundamentals). We fix a measurable space (Ω,F) where Ω is the

outcome space and F is a (σ-)algebra defined on it. A risk is a random variable

defined on (Ω,F); that is, X : Ω → R is a risk if X−1((−∞, x]) ∈ F for all x ∈ R.

A risk represents the final net loss of a position (contingency) currently held. When

X > 0, we call it a loss, whereas when X ≤ 0, we call it a gain. The class of all random

variables on (Ω,F) is denoted by X .

In the insurance industry, the main types of risk are classified as follows:

( 1 ) The market risk, the credit risk, the operational risk, the model risk and the

liquidity risk. These are the main types of risks encountered in the financial industry.

( 2 ) The underwriting risk: the risks inherent in insurance policies that have been

sold:

• The risk that premiums will not be sufficient to cover future incurred losses and

that losses and loss adjustment expenses’ current reserves are not sufficient al-

though the distributions of losses have been well assessed.

• The risk that may arise from an inaccurate assessment of the risks entailed in

writing an insurance policy or from factors that are not under the insurer’s con-

trol (changes in patterns of natural catastrophes, changes in demographic tables

underlying long-date life products, changes in customer behaviour, so on)

The families of risk measures: for measurement of both financial and insurance

risks, is computed by P-quantile risk measure, risk measures based on expected utility

theory, risk measures based on distorted expectation theory and calculation principle.

Definition 2.9 (Premium calculation principle (pricing principle)). A premium

(calculation) principle or pricing principle h is a functional assigning a real number to

any random variable defined on (Ω,F); that is, h is a mapping from X to R.

Remark 2.1. In general, no integrability conditions need to be imposed on the elements

of X . In the absence of integrability conditions, some of the premium principles studied
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below will be on infinite subclasses of X . Instead of imposing integrability conditions,

we may extend the range in the definition of h to R ∪ {−∞,∞}. In case h(X) = +∞,

we say that the risk is unacceptable or non-insurable.

Classical actuarial pricing of insurance risks mainly relies on the economic the-

ories of decision under uncertainty, in particular on Von Neumann & Morgenstern’s

(1947) expected utility theory and Savage’s (1954) subjective expected utility theory.

Using the principle of equivalent utility and specifying a utility function, various well-

known premium principles can be derived. An important example is the exponential

premium principle, obtained by using a (negative) exponential utility function, having

a constant rate of risk aversion.

2.4.1 Premium Principles and Their Properties

Many of the (families of) premium principles can be (directly) characterized

axiomatically. The general purpose of an axiomatic characterization is to demonstrate

what are the essential assumptions to be imposed and what are relevant parameters

or concepts to be determined. A premium principle is appropriate if and only if its

characterizing axioms are. Axiomatizations can be used to justify a premium principle,

but also criticize it.

A systematic study of the properties of premium calculation principles and their

axiomatic characterizations was pioneered by Goovaerts, De Vylder & Haezendonck

(1984). Here we give some details of properties that premiums principles may (or may

not) satisfy.

Properties of Premium Principles

Definition 2.10 (Law invariance (independent, objectivity)). h is (P -) law

invariant if h(X) = h(Y ) when P (X ≤ x) = P (Y ≤ y) for all real x.
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Definition 2.11 (Monotonicity). h is monotonic if h(X) ≤ h(Y ) when X(ω) ≤

Y (ω) for all ω ∈ Ω. h is P -monotonic if h(X) ≤ h(Y ) when X ≤ Y P−almost

surely.

Definition 2.12 (Preserving first-order stochastic dominance (FOSD)). h pre-

serves first-order stochastic dominance if h(X) ≤ h(Y ) when P (X ≤ x) ≥ P (Y ≤ y)

for all x ∈ R.

Law invariance together with monotonicity implies preserving FOSD.

Definition 2.13 (Preserving stop-loss order (SL)). h preserves stop-loss order if

h(X) ≤ h(Y ) when E[(X − d)+]) ≤ E[(Y − d)+] for all d ∈ R.

Definition 2.14 (Risk loading). h induces a risk loading if h(X) ≥ E[X].

Definition 2.15 (Not unjustified). h is not unjustified if h(c) = c for all real c.

Definition 2.16 (Additivity). h is additive if h(X + Y ) = h(X) + h(Y ).

Definition 2.17 (Translation invariance). h is translation invariant if h(X + c) =

h(X) + c for all real c.

Definition 2.18 (Positive homogeneity (scale invariance)). h is positively homo-

geneous if h(aX) = ah(X) for all a ≥ 0.

Definition 2.19 (Subadditivity resp. Superaddivity). h is subadditive (resp.

super-additive) if h(X + Y ) ≤ h(X) + h(Y ).

Definition 2.20 (Convexity). h is convex if h(αX+(1−α)Y ) ≤ αh(X)+(1−α)h(Y )

for all α ∈ (0, 1).

Definition 2.21 (Independent additivity). h is independent additive if h(X+Y ) =

h(X) + h(Y ) when X and Y are independent.

Definition 2.22 (Comonotonic additivity). h is comonotonic additive if h(X +

Y ) = h(X) + h(Y ) when X and Y are comonotonic (see Appendix C).

Definition 2.23 (Iterativity). h is iterative if h(X) = h(h(X|Y )).
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Premium Principles

In this subsection, we list many well-known premium principles. Some premium

principles (Esscher) arise from more than one theory. Other premium principles (Dutch)

instead are not directly based on any theories nor on an axiomatic characterization, but

rather on the nice properties that they exhibit.

Definition 2.24 (Net premium principle). The net premium principle is given by

h(X) = E[X].

Definition 2.25 (Expected value principle). The expected value principle is given

by

h(X) = (1 + λ)E[X], λ ≥ 0.

Notice that if λ = 0 , the net premium is obtained.

Definition 2.26 (Mean value principle). For a given non-decreasing and non-

negative function f on R the mean value principle is the root of

f(h) = E[f(X)].

Definition 2.27 (Variance principle). The variance principle is given by

h(X) = E[X] + λV ar(X), λ > 0.

Definition 2.28 (Standard deviation principle). The standard deviation principle

is given by

h(X) = E[X] + λ
√
V ar(X), λ > 0.

Definition 2.29 (Exponential principle). The exponential principle is given by

h(X) =
1

α
logE[eαX ], α > 0.

Definition 2.30 (Esscher principle). The Esscher principle is given by

h(X) =
E[XeαX ]

E[eαX ]
, α > 0.
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Definition 2.31 (Swiss principle). For a given non-negative and non-decreasing

function w on R and a given parameter 0 ≤ p ≤ 1 the Swiss premium is the root of

E[w(X − ph)] = w((1− p)h).

Definition 2.32 (Dutch principle). The Dutch principle is given by

h(X) = E[X] + θE[(X − αE[X])+], α ≥ 1, 0 < θ ≤ 1.

Definition 2.33 (Orlicz principle). Let X ≥ 0. For a given normalized Young func-

tion φ on R+ ∪ {0} the Orlicz premium is the root of

E[φ(
X

h
)] = 1.



CHAPTER III

CLAIM DEPENDENCE MODELLING

In this chapter, we present a model of claim dependence induced by common

effect (in the terminology of Yeo and Valdez (2006)) and preliminaries. For a loss

function consideration, we are mainly interested in the expected squared error loss. We

derive some basic results concerning the identification of premiums and of the losses

attached to them.

3.1 Model Formulation and Preliminaries

3.1.1 Model Formulation

Let (Ω,F ,P) be a probability space, let L2(F) denoted the Hilbert space of all

random variables X : Ω −→ R having a finite second moment. All random variables

that we shall work with will be in this space.

Let I and T be positive integers. Consider a portfolio of insurance contracts

consisting of I insured individuals and each individual has available a history of T

time periods. Denote by Xi,t; 1 ≤ i ≤ I, 1 ≤ t ≤ T , the claim amount for individual i

during period t. Therefore, the random vector

X⃗i = (Xi,1, Xi,2, . . . , Xi,t)
′

represents the vector of claims for a particular individual i = 1, 2, . . . , I. Our primary

interest is to predict the next claim for each individual i based on all the observed

claims

X⃗ = (X⃗1, X⃗2, . . . , X⃗I). (3.1)

This will be denoted by the random variable Xi,T+1.
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The one-level common effect model of claim dependence.

As already mentioned in the introductory section, the model of dependence being

proposed in this section below, will allow the dependence among the individual risks.

The dependence among the individual risks will be described by a common effect random

variable Λ whose density function will be assumed to be known and denoted by fΛ(λ).

Realization of this common effect is denoted by λ. Conditional on this common effect,

the random vectors X⃗i are independent. As Λ is a common effect among all risks,

it will define the dependence structure between risks, and it can either be a discrete,

continuous, or a mixture of discrete and continuous random variables. More precisely,

we shall summarize these setting into the following assumptions.

A1. The common effect random variable Λ has known probability density

function fΛ(λ) provided that fΛ(λ) > 0 for all λ.

A2. For a fixed i = 1, 2, . . . , I, the random variables Xi,t, t = 1, 2, . . . , T are

mutually independent and identically distributed.

A3. The random vectors X⃗i|Λ = λ, i = 1, 2, . . . , I where X⃗i = (Xi,1,

Xi,2, . . . , Xi,T )
′
are conditionally independent.

A4. For a fixed i = 1, 2, . . . , I and a fixed t = 1, 2, . . . , T , the conditional

random variable Xi,t given that Λ = λ has known probability function denoted by

fXi,t|Λ(xi,t|λ) =:
fXi,t,Λ(xi,t, λ)

fΛ(λ)
.

One can think of Λ as the variable inducing dependence of claim among indi-

viduals, such as in the case of an epidemic in life insurance, a catastrophe in general

insurance, or simply bad weather conditions on a day when automobile accidents are

frequent.

3.2 Loss function Minimization

The word risk in section (3.1) usually refers to any general risk, while on indi-

vidual’s risk in the latter situation is referred to as the claim amount for an individual,
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unless otherwise stated.

Consider the proposed model in section (3.1.1), the nature of dependence which

influences the claim amounts is represented by the common effect Λ. Conditional on this

common effect, the claim amounts are independent. In this subsection, we show that

the Bayesian premium is asymptotically optimal in terms of losses. Before we minimize

loss by using a expected square error loss function, we first mention the mathematical

tools and introduce some types of premiums which relate to the expected square error

loss.

3.2.1 Background

We are interested in Xi,T+1, i = 1, 2, . . . , I, the claim amount of individual

i = 1, 2, . . . , I for the next time period which is to be predicted by a premium p ∈ △

minimizing the loss E[(Xi,T+1 − p)2] over △, where △ ⊂ L2(F) is a prescribed class

of premiums to be specified below.

We assume that varE[Xi,T+1|Λ] > 0. Here E[Xi,T+1|Λ] denotes the conditional

expectation of Xi,T+1 with respect to the σ-algebra σ(Λ) generated by Λ, and we

have E[Xi,T+1|Λ] ∈ L2(σ(Λ)); correspondingly, var(Xi,T+1|Λ) denotes the conditional

variance E[(Xi,T+1−E[Xi,T+1|Λ])2|Λ] of Xi,T+1 with respect to σ(Λ). Let X̄ denote

the sample mean 1
IT
(
∑I

i=1

∑T
t=1Xi,t), and define

µ := E[Xi,T+1] = E[E[Xi,T+1|Λ]],

v := E[var(Xi,T+1|Λ)],

a := var(E[Xi,T+1|Λ]). (3.2)

With these definitions, we have var(X) = E[(Xi,T+1−µ)2] = v+a; see also proposition

(3.3) below.
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We consider three classes of premiums:

△0 := R

△1 := L2(σ(Λ))

△I := L2(σ(X1,1, X1,2, . . . , X1,T , . . . , XI,1, . . . , XI,T ). (3.3)

Since each △0,△1,△I is a closed subspace of L2(F), the projection theorem in Hilbert

spaces yields the existence of unique p0 ∈ △0, p1 ∈ △1, p2 ∈ △I satisfying

E[(Xi,T+1 − p0)
2] := inf

△0

E[(Xi,T+1 − p)2]

E[(Xi,T+1 − p1)
2] := inf

△1

E[(Xi,T+1 − p)2]

E[(Xi,T+1 − p2)
2] := inf

△I

E[(Xi,T+1 − p)2], (3.4)

for a fixed individual i = 1, 2, . . . , I. In what follows in this thesis, we shall call

p0 the collective premium,

p1 the individual premium, and

p2 the Bayesian premium. (3.5)

We are mainly interested in the Bayesian premium, which is the best prediction of

Xi,T+1 by an arbitrary function of X1,1, X1,2, . . . , X1,T , . . . , XI,1, . . . , XI,T . The col-

lective premium and the individual premium may be interpreted as the Bayesian in

the no-data case and serves mainly as a reference for comparisons. However, we note

that there is no obvious relation between △1 and △I ; nothing more than a suggestive

notation which still has to be justified.

In subsection 3.2.2 we state some results concerning the identification of these

premiums and of the losses attached to them.

3.2.2 Basic Results

Since Xi,T+1 and X1,1, X1,2, . . . , X1,T , . . . , XI,1, . . . , XI,T are conditionally in-

dependent with respect to Λ for a fixed i = 1, 2, . . . , I, the same is true for Xi,T+1
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and each p ∈ △I . This yields the following useful result:

Lemma 3.1. For a fixed i = 1, 2, . . . , I, The identity

E[(Xi,T+1 − p)2] = E[(Xi,T+1 − E[Xi,T+1|Λ])2] + E[(E[Xi,T+1|Λ]− p)2]

holds for all p ∈ △I .

The proof of the lemma is shown in Appendix B.

Proposition 3.2. For the optimum premiums p0, p1, p2 and a fixed individual i =

1, 2, . . . , I we have:

(a) p0 = µ

(b) p1 = E[Xi,T+1|Λ]

(c) p2 = E[Xi,T+1|X⃗] = E[E[Xi,T+1|Λ)|X⃗]].

In particular, p2 = E[p1|X⃗].

Proof. Firstly, we fix i; i = 1, 2, . . . , I. From equation (3.3) and equation (3.4) then

we have:

(a) The projection theorem in Hilbert spaces yields the existence of unique

p0 ∈ △0, satisfying

E[(Xi,T+1 − p0)
2] = inf

△0

E[(Xi,T+1 − p)2].

It follows immediately that p0 = E[Xi,T+1] = E[E[Xi,T+1Λ]].

(b) The projection theorem in Hilbert spaces yields the existence of unique

p1 ∈ △1, satisfying

E[(Xi,T+1 − p1)
2] = inf

△1

E[(Xi,T+1 − p)2].

It follows from the fact that the projection of Xi,T+1 onto △1 = L2(σ(Λ)) is precisely

the conditional expectation of Xi,T+1 with respect to σ(Λ). Then p1 = E[Xi,T+1|Λ].

(c) Similarly to (b), the projection of Xi,T+1 onto

△2 = L2(σ(X1,1, X1,2, . . . , X1,T , . . . , XI,1, . . . , XI,T ))
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is precisely the conditional expectation of Xi,T+1 with respect to

σ(X1,1, X1,2, . . . , X1,T , . . . , XI,1, . . . , XI,T ).

Then p2 = E[Xi,T+1|X1,1, X1,2, . . . , X1,T , . . . , XI,1, . . . , XI,T ] = E[Xi,T+1|X⃗].

The final equality in proposition 3.2 follows from

p2 = E[E[Xi,T+1|Λ)|X⃗]] = E[p1|X⃗].

This concludes the proof.

Proposition 3.3. For the loss attached to these premiums and a fixed individual i =

1, 2, . . . , I, we have:

(a) E[(Xi,T+1 − p0)
2] = v + a

(b) E[(Xi,T+1 − p1)
2] = v

(c) E[(Xi,T+1 − p2)
2] = v + E[var(E[Xi,T+1|Λ]|X⃗)]

In particular, E[(Xi,T+1 − p1)
2] ≤ E[(Xi,T+1 − p2)

2] ≤ E[(Xi,T+1 − p0)
2].

Proof. Firstly, we fix i; i = 1, 2, . . . , I. The proof is straightforward.

(a)

E[(Xi,T+1 − p0)
2] = E[(Xi,T+1 − E[Xi,T+1])

2]

= var(Xi,T+1)

= E[var(Xi,T+1|Λ)] + var(E[Xi,T+1|Λ])

= v + a.

(b)

E[(Xi,T+1 − p1)
2] = E[(Xi,T+1 − E[Xi,T+1|Λ])2]

= E
[
E[(Xi,T+1 − E[Xi,T+1|Λ)2]|Λ

]
= E[var(Xi,T+1|Λ)]

= v.
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(c)

E[(Xi,T+1 − p2)
2] = E[(Xi,T+1 − E[Xi,T+1|X1,1, . . . , X1,T , . . . , XI,1, . . . , XI,T ])

2]

= E[(Xi,T+1 − E[Xi,T+1|X⃗])2].

Now, using Lemma 3.1 yields

E[(Xi,T+1 − E[Xi,T+1|X⃗])2] = E[(Xi,T+1 − E[Xi,T+1|Λ])2]

+ E[(E[Xi,T+1|Λ]− E[Xi,T+1|X⃗])2]

= E[var(Xi,T+1|Λ])] + E[(E[Xi,T+1|Λ]− E[Xi,T+1|X⃗])2]

= v + E
[
E
[
(E[Xi,T+1|Λ]− E[Xi,T+1|X⃗])2|X⃗

]
= v + E

[
E[(E[Xi,T+1|Λ]− E

[
E[Xi,T+1|Λ]|X⃗

]
)2|X⃗

]
= v + E

[
var(E[Xi,T+1|Λ]|X⃗)

]
.

The final inequality in proposition 3.3 follows from

v ≤ v + E[var(E[Xi,T+1|Λ]|X⃗)]

and △0 ⊂ △1. This concludes the proof.



CHAPTER IV

MAIN RESULTS

From section (3.2), we know that for a fixed individual j = 1, 2, . . . , I, the

conditional expectation E[Xj,T+1|X⃗] gives our best estimate of next period claim in

the sense of the mean squared prediction error and also gives our desired premium. For

convenience, denote the random vector

X⃗ = (X⃗1, X⃗2, . . . , X⃗I) (4.1)

where X⃗j = (Xj,1, Xj,2, . . . , Xj,T )
′
for j = 1, 2, . . . , I, which gives all the observable

claims from all individuals and across T time period. The conditional expectation

which is the so-called ”Bayesian premium” can then be conveniently expressed as

E[Xj,T+1|X⃗] =

∫
xj,T+1 · fXj,T+1|X⃗(xj,T+1|x⃗)dxj,T+1 (4.2)

and the integral is the Riemann-Stieljes integral.

4.1 Method to Find Bayesian Premium

The Bayesian premium E[Xj,T+1|X⃗] for a fixed individual j = 1, 2, . . . , I

requires an explicit formula of conditional density fXj,T+1|X⃗(xj,T+1|x⃗). To achieve this,

we need a following lemma.

Lemma 4.1. Let Λ be a random variable satisfying the assumption A1 to A4 and X⃗

be the vector of all observable claims which is defined in (4.1). The joint density of X⃗

and the overall risk parameter Λ can be expressed as

fX⃗,Λ(x⃗, λ) =
I∏

i=1

fX⃗i|Λ(⃗xi|λ)× fΛ(λ). (4.3)
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Proof. By definition of conditional density and assumption A3, we have

fX⃗,Λ(x⃗, λ) = fX⃗|Λ(x⃗, |λ)× fΛ(λ)

=
I∏

i=1

fX⃗i|Λ(x⃗i|λ)× fΛ(λ). (4.4)

Next, we compute fΛ|X⃗(λ|x⃗). Using the definition of conditional density and

equation (4.4), we have

fΛ|X⃗(λ|x⃗) = fX⃗,Λ(x⃗, λ)×
1

fX⃗(x⃗)

= C ×
I∏

i=1

fX⃗i|Λ(x⃗i|λ)× fΛ(λ) (4.5)

where C is a normalizing constant and can be expressed as

C =
1

fX⃗(x⃗)
= (

∫
fX⃗,Λ(x⃗, λ)dλ)

−1.

We now state the result for desired conditional density of Xj,T+1|X⃗.

Theorem 4.2. Suppose the random variable Λ and the random vector X⃗ satisfy all

assumptions as in Lemma 4.1. The conditional density of Xj,T+1|X⃗ can be expressed

as

fXj,T+1|X⃗(xj,T+1|x⃗) =

∫
fXj,T+1|Λ(xj,T+1|λ)× fΛ|X⃗(λ|x⃗) dλ. (4.6)

Proof. By definition of conditional density, we have

fXj,T+1|X⃗(xj,T+1|x⃗) = fXj,T+1,X⃗
(xj,T+1, x⃗)×

1

fX⃗(x⃗)
(4.7)

Considering the right-hand side of equation (4.7), we note that the term

fXj,T+1,X⃗
(xj,T+1, x⃗) can be calculated by integrating fXj,T+1,X⃗,Λ(xj,T+1, x⃗, λ) with re-

spect to λ. Hence, firstly we shall compute fXj,T+1,X⃗,Λ(xj,T+1, x⃗, λ). By definition of

conditional density, assumptions A3 and A4 then we have

fXj,T+1,X⃗,Λ(xj,T+1, x⃗, λ) = fXj,T+1,X⃗|Λ(xj,T+1, x⃗|λ)× fΛ(λ)

= fXj,T+1|Λ(xj,T+1|λ)× fX⃗|Λ(x⃗|λ)× fΛ(λ)

= fXj,T+1|Λ(xj,T+1|λ)×
I∏

i=1

fXi|Λ(xi, |λ)× fΛ(λ) (4.8)
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By equation (4.5)

fΛ|X⃗(λ|x⃗) =
I∏

i=1

fX⃗i|Λ(x⃗i|λ)× fΛ(λ)×
1

fX⃗(x⃗)
,

so we have
I∏

i=1

fX⃗i|Λ(x⃗i|λ)× fΛ(λ) = fΛ|X⃗(λ|x⃗)× fX⃗(x⃗). (4.9)

Substituting (4.9) into (4.8) yields

fXj,T+1,X⃗,Λ(xj,T+1, x⃗, λ) = fXj,T+1|Λ(xj,T+1|λ)× fΛ|X⃗(λ|x⃗)× fX⃗(x⃗). (4.10)

Next, integrating (4.10) with respect to λ, we have

fXj,T+1,X⃗
(xj,T+1, x⃗) =

∫
fXj,T+1|Λ(xj,T+1|λ)× fΛ|X⃗(λ|x⃗)× fX⃗(x⃗) dλ

= fX⃗(x⃗)

∫
fXj,T+1|Λ(xi,T+1|λ)× fΛ|X⃗(λ|x⃗) dλ. (4.11)

Substituting (4.11) into (4.7), we obtain

fXj,T+1|X⃗(xj,T+1|x⃗) =

∫
fXj,T+1|Λ(xj,T+1|λ)× fΛ|X⃗(λ|x⃗) dλ.

The proof is now complete.

The purpose of the theorem above is to derive an explicit expression for the

conditional density in terms of all available or given information. First, notice from this

theorem that this conditional density involves the product of the conditional density

which according to assumption A4 is known and given, and that of

fΛ|X⃗(λ|x⃗) = fΛ,X⃗(λ, x⃗)×
1

fX⃗(x⃗)

=
fX⃗|Λ(x⃗|λ)× fΛ(λ)

fX⃗(x⃗)
,

for which the numerator can be evaluated using Lemma (4.1) together with the inde-

pendence of common effect.

Although the setting of the proposed model renders it non-Bayesian superficially,

the nature of it is still very much Bayesian. As such, it will inherit all the benefits from

a Bayesian solution, most notably, the smallest mean squared prediction error. See

Klugman (1992) for a discussion of this.
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4.2 Bayesian Premium with Normal Common Effect

In this section, we shall use equation (4.2) by applying Theorem 4.2 to find the

Bayesian premium when the common effect Λ is normally distributed and the claim

amounts are lognormally or normally distributed. Moreover, we can use this result to

derive an explicit expression for the predicted claim amount.

4.2.1 Bayesian Premium with Lognormal Claim Amounts

In this subsection, we assume that the claim amounts of each policyholder in

the rating class are lognormally distributed and characterized by the common effect Λ

introduced in previous chapter. For convenience, we write X|λ =: X|Λ = λ. Before

we consider special cases of the normal common effect assumption, let us consider the

more general case where we have I insured individuals and where the common effects

have variances which are not necessarily unit. To carry out the derivation, we make the

following assumptions:

L1. the random variables Xj,t|λ are lognormally distributed, i.e.,

Xj,t|λ ∼ LN(µj + λ, σ2
x) for j = 1, 2, . . . , I, and t = 1, 2, . . . , T,

where µj is a constant depending on individual j.

Then Xj,t|λ has a mean of e(µj+λ)+
σ2
x
2 and a variance of (eσ

2
x − 1)(e2(µj+λ)+σ2

x),

L2. the over all common effect λ is normally distributed with mean µλ and

variance σ2
λ.

It follows therefore that we have

fXj,t|Λ(xj,t|λ) =
1

xj,tσx

√
2π

e
− 1

2

(
lnxj,t−(µj+λ)

σx

)2

, and

fΛ(λ) =
1

σλ

√
2π

e
− 1

2

(
λ−µλ
σλ

)2

.

A useful application of Theorem (4.2) appears in the following theorem.
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Theorem 4.3. Suppose the random variable Λ and the random vector X⃗ satisfy all

assumptions as in Lemma 4.1. Assume further that Xj,t|λ and common effect Λ satisfy

L1 and L2, respectively. Then the Bayesian premium can be written as

E[Xj,T+1|X⃗] = e

[σ2
λ

(∑I
i=1

∑T
t=1 lnXi,t−T

∑I
i=1 µi+µjIT

)
+σ2

x

(
µλ+µj

)
σ2
λ
IT+σ2

x

]
e

[(σ2
λ(IT+1)+σ2

x

)
σ2
x

2(σ2
λ
IT+σ2

x)

]
. (4.12)

for j = 1, 2, . . . , I.

Proof. Assume assumptions L1 and L2 hold, i.e.,

fXj,t|Λ(xj,t|λ) =
1

xjσx

√
2π

e
− 1

2

(
lnxj−(µj+λ)

σx

)2

, and

fΛ(λ) =
1

σλ

√
2π

e
− 1

2

(
λ−µλ
σλ

)2

.

Recall that

E[Xj,T+1|X⃗] =

∫
xj,T+1 · fXj,T+1|X⃗(xj,T+1|x⃗)dxj,T+1

The main purpose is to derive the density of Xj,T+1|X⃗ where without loss of

generality, we fix j = 1. Applying Theorem (4.2), we have

fX1,T+1|X⃗(x1,T+1|x⃗) =

∫
fX1,T+1|Λ(x1,T+1|λ)× fΛ|X⃗(λ|x⃗) dλ

=

∫
fX1,T+1|Λ(x1,T+1|λ)× fΛ,X⃗(λ, x⃗)×

1

fX⃗(x⃗)
dλ

= C1

∫
fX1,T+1|Λ(x1,T+1|λ)× fΛ,X⃗(λ, x⃗) dλ. (4.13)

where C1 = 1
f
X⃗
(x⃗)

is just a normalizing constant and does not have to be solved for

explicitly. Here, and in the subsequent development, the limits of the integrals are the

entire real line. The conditional density fX1,T+1|Λ(x1,T+1|λ) is already known to be

fX1,T+1|Λ(x1,T+1|λ) =
1

x1,T+1σx

√
2π

e
− 1

T+1

(
lnx1,T+1−(µ1+λ)

σx

)2

. (4.14)
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The joint density fΛ,X⃗(λ, x⃗) can be derived by utilizing lemma (4.1), giving

fX⃗,Λ(x⃗, λ) = fX⃗|Λ(x⃗, |λ)× fΛ(λ)

=
I∏

i=1

fX⃗i|Λ(x⃗i, |λ)× fΛ(λ)

=
I∏

i=1

( T∏
t=1

1

xi,tσx

√
2π

e
− 1

2

(
lnxi,t−(µi+λ)

σx

)2) 1

σλ

√
2π

e
− 1

2

(
λ−µλ
σλ

)2

. (4.15)

Substituting (4.14) and (4.15) into (4.13), we have

fX1,T+1|X⃗(x1,T+1|x⃗) = C1

∫
fX1,T+1|Λ(x1,T+1|λ)× fΛ,X⃗(λ, x⃗) dλ

= C1

∫
1

x1,T+1σx

√
2π

e
− 1

2

(
lnx1,T+1−(µ1+λ)

σx

)2

×
I∏

i=1

( T∏
t=1

1

xi,tσx

√
2π

e
− 1

2

(
lnxi,t−(µi+λ)

σx

)2) 1

σλ

√
2π

e
− 1

2

(
λ−µλ
σλ

)2

dλ

=

∫
C1

x1,T+1

∏I
i=1

(∏T
t=1 xi,t

)
(σx)IT+1(2π)

IT+2
2 σλ

× e
− 1

2

[∑T+1
t=1

(
lnx1,t−(µ1+λ)

σx

)2]

× e
− 1

2

[∑I
i=2

∑T
t=1

(
lnxi,t−(µi+λ)

σx

)2]
× e

− 1
2

(
λ−µλ
σλ

)2

dλ. (4.16)

Taking the terms containing λ from (4.16), after simplifying, we have

∫
1

2π
e
− 1

2

[∑T+1
t=1

(
lnx1,t−(µ1+λ)

σx

)2

+
∑I

i=2

∑T
t=1

(
lnxi,t−(µi+λ)

σx

)2]
× e

− 1
2

(
λ−µλ
σλ

)2

dλ

=

∫
1

2π
e
− IT+1

2σ2
x

[(
λ−

(∑I
i=1

∑T
t=1 lnxi,t+lnx1,T+1

)
−
(
T

∑I
i=1 µi+µ1

)
IT+1

)2]
e
− 1

2

(
λ−µλ
σλ

)2

× e
− 1

2σ2
x

[
−
([∑I

i=1
∑T

t=1 lnxi,t+lnx1,T+1

]
−
[
T

∑I
i=1 µi+µ1

])2

IT+1

]

× e
− 1

2σ2
x

[ (∑I
i=1

∑T
t=1(lnxi,t)

2+(lnx1,T+1)
2
)
−2
(∑I

i=1(µi
∑T

t=1 lnxi,t)+(lnx1,T+1·µ1)
)]
dλ.

× e
− 1

2σ2
x

[(
T
∑I

i=1 µ
2
i+µ2

1

)]
dλ. (4.17)

( see proof of (4.17) in Appendix A1 ).
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Notice the part of (4.17) can be simplified as follows:

1

2π
e
− IT+1

2σ2
x

[(
λ−

(∑I
i=1

∑T
t=1 lnxi,t+lnx1,T+1

)
−
(
T

∑I
i=1 µi+µ1

)
IT+1

)2]
e
− 1

2

(
λ−µλ
σλ

)2

=
σx√

IT + 1

(√IT + 1

σx

× 1√
2π

e
− IT+1

2σ2
x

[(
λ−

(∑I
i=1

∑T
t=1 lnxi,t+lnx1,T+1

)
−
(
T

∑I
i=1 µi+µ1

)
IT+1

)2])
× σλ

( 1

σλ

× 1√
2π

e
− 1

2

(
λ−µλ
σλ

)2)
=

σxσλ√
IT + 1

× φ(

√
IT + 1

σx

[
λ−

(∑I
i=1

∑T
t=1 lnxi,t + lnx1,T+1

)
−

(
T
∑I

i=1 µi + µ1

)
IT + 1

]
)

× φ(
λ− µλ

σλ

), (4.18)

where φ(z) is the standard normal density.

At this point, we use a result from Valdez (2004) to simplify (4.18). This result

states that for φ(z) and any constants a and b, the following is true:

∫ ∞

−∞
φ(z)φ(a− bz) =

1√
b2 + 1

φ(

√
a2

b2 + 1
). (4.19)

Thus, by letting z = λ−µλ

σλ
so that dz = 1

σλ
dλ, then applying (4.19) to (4.18) and
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after simplifying, we have

∫
1

2π
e
− 1

2

[∑T+1
t=1

(
lnx1,t−(µ1+λ)

σx

)2

+
∑I

i=2

∑T
t=1

(
lnxi,t−(µi+λ)

σx

)2]
× e

− 1
2

(
λ−µλ
σλ

)2

dλ

=

∫
φ(

√
IT + 1

σx

[
λ−

(∑I
i=1

∑T
t=1 lnxi,t + lnx1,T+1

)
−

(
T
∑I

i=1 µi + µ1

)
IT + 1

]
)

× σxσλ√
IT + 1

× φ(
λ− µλ

σλ

)× e
− 1

2σ2
x

[
−
([∑I

i=1
∑T

t=1 lnxi,t+lnx1,T+1

]
−
[
T

∑I
i=1 µi+µ1

])2

IT+1

]

× e
− 1

2σ2
x

[ (∑I
i=1

∑T
t=1(lnxi,t)

2+(lnx1,T+1)
2
)
−2
(∑I

i=1(µi
∑T

t=1 lnxi,t)+(lnx1,T+1·µ1)
)]

× e
− 1

2σ2
x

[
T
∑I

i=1 µ
2
i+µ2

1

]
dλ

= φ(

√
IT + 1

σ2
λ(IT + 1) + σ2

x

[(∑I
i=1

∑T
t=1 lnxi,t + lnx1,T+1

)
−
(
T
∑I

i=1 µi + µ1

)
IT + 1

− µλ

]
)

× σxσλ√
IT + 1

× σλ√
σ2
λ(IT+1)

σ2
x

+ 1
× e

− 1

2σ2
x

[
−
([∑I
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∑T

t=1 lnxi,t+lnx1,T+1

]
−
[
T
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(∑I

i=1(µi
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)
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(
T
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)
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]
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2
λ

√
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([∑I

i=1
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∑T

t=1 lnxi,t)+(lnx1,T+1·µ1)
)]

× e
− 1

2σ2
x

[
T
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1

]
. (4.20)

(see proof of (4.20) in Appendix A2)

We now continue from (4.16) by substituting (4.20) back into the equation to obtain
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fX1,T+1|X⃗(x1,T+1|x⃗)

=

∫
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([∑I

i=1
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[
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∑I
i=1 µi+µ1

])2

IT+1

]

× e
− 1

2σ2
x

[ (∑I
i=1

∑T
t=1(lnxi,t)

2+(lnx1,T+1)
2
)
−2
(∑I
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∑I

i=1 µ
2
i+µ2

1

]
× C1

x1,T+1(
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(4.21)

By setting a constant

C2 =
C1σλ

(
∏I

i=1

∏T
t=1 xi,t)(σx)IT (2π)

IT+1
2

√
IT + 1

√
σ2
λ(IT+1)

σ2
x

+ 1
,
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then we have

fX1,T+1|X⃗(x1,T+1|x⃗)

=
C2

X1,T+1

e
− 1
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σ2
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x
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(∑I

i=1(µi
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]

=
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e
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2
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x
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(4.22)
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By extracting and regrouping (4.22), we have

fX1,T+1|X⃗(x1,T+1|x⃗)

=
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X1,T+1

e
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[(∑I
i=1

∑T
t=1(lnxi,t)

2+(lnx1,T+1)
2
)(

σ2
λ(IT+1)2+σ2

x(IT+1)

)
(σ2

λ
(IT+1)+σ2

x)σ2
x(IT+1)

]

× e
− 1

2

[(∑I
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(4.23)

Extracting and grouping the terms containing (ln x1,T+1)
2 and ln x1,T+1, to obtain
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fX1,T+1|X⃗(x1,T+1|x⃗)

=
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(4.24)
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=
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Now, we can rewritten (4.25) in the form

fX1,T+1|X⃗(x1,T+1|x⃗) =
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∑I

i=1 µi + µ1)

(σ2
λ(IT + 1) + σ2

x)σ
2
x(IT + 1)

=
µ1σ

2
λ(IT + 1) + σ2

λ

(∑I
i=1

∑T
t=1 lnxi,t − (T

∑I
i=1 µi + µ1)

)
+ σ2

x(µλ + µ1)

(σ2
λ(IT + 1) + σ2

x)σ
2
x

=
σ2
λ

(∑I
i=1

∑T
t=1 lnxi,t − T

∑I
i=1 µi + µ1IT

)
+ σ2

x(µλ + µ1)

(σ2
λ(IT + 1) + σ2

x)σ
2
x

, and

(4.27)
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K =
−(σ2

λ(IT + 1))(
∑I

i=1

∑T
t=1 lnxi,t)

2

(σ2
λ(IT + 1) + σ2

x)σ
2
x(IT + 1)

+
2(σ2

λ(IT + 1))(
∑I

i=1

∑T
t=1 lnxi,t)(T

∑I
i=1 µi + µ1)

(σ2
λ(IT + 1) + σ2

x)σ
2
x(IT + 1)

−
(σ2

λ(IT + 1))
[
T
∑I

i=1 µi + µ1

]2
(σ2

λ(IT + 1) + σ2
x)σ

2
x(IT + 1)

+

(∑I
i=1

∑T
t=1(lnxi,t)

2
)(
σ2
λ(IT + 1)2 + σ2

x(IT + 1)
)

(σ2
λ(IT + 1) + σ2

x)σ
2
x(IT + 1)

+

(∑I
i=1(µi

∑T
t=1 lnxi,t)

)(
− 2σ2

λ(IT + 1)2 − 2σ2
x(IT + 1)

)
(σ2

λ(IT + 1) + σ2
x)σ

2
x(IT + 1)

+

(
T
∑I

i=1 µ
2
i + µ2

1

)(
σ2
λ(IT + 1)2 + σ2

x(IT + 1)
)

(σ2
λ(IT + 1) + σ2

x)σ
2
x(IT + 1)

−
2σ2

xµλ(IT + 1)
(∑I

i=1

∑T
t=1 lnxi,t

)
(σ2

λ(IT + 1) + σ2
x)σ

2
x(IT + 1)

+
2σ2

xµλ(IT + 1)
(
T
∑I

i=1 µi + µ1

)
+ σ2

x(IT + 1)2µ2
λ

(σ2
λ(IT + 1) + σ2

x)σ
2
x(IT + 1)

. (4.28)

Using the square operation

e−
1
2

[
Ax2−2x+K

]
= e−

1
2

[
K−B2

A

]
× e

− 1
2

[(x−B
A

)2

1
A

]
,

then (4.28) becomes

fX1,T+1|X⃗(x1,T+1|x⃗) =
C2

x1,T+1

e
− 1

2

[(lnx1,T+1−
B
A

)2

1
A

]
× e−

1
2

[
K−B2

A

]
. (4.29)

We observe that 1
x1,T+1

e
− 1

2

[(lnx1,T+1−
B
A

)2

1
A

]
is the kernel of lognormal distribution.

Therefore, it can be concluded that X1,T+1|X⃗ ∼ LN(µ1,T+1, σ
2
1,T+1) where µ1,T+1 =

B
A

and σ2
1,T+1 =

1
A
. Thus

E[X1,T+1|X⃗] = eµ1,T+1+
σ2
1,T+1

2

= e

[σ2
λ

(∑I
i=1

∑T
t=1 lnxi,t−T

∑I
i=1 µi+µ1IT

)
+σ2

x(µλ+µ1)

σ2
x+σ2

λ
IT

]
× e

[(σ2
λ(IT+1)+σ2

x

)
σ2
x

2(σ2
x+σ2

λ
IT )

]
. (4.30)

This concludes the proof.
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4.2.2 Bayesian Premiums with Normal Claim Amounts

In this subsection, we consider the case in which the risks in a portfolio are

homogeneous, i.e., each individual’s claim amounts have the same mean and variance,

and the claims of each individual in the group policy are normally distributed with

mean (µ+ λ) and variance σ2
x. More precisely, we make the assumption

N1. the random variables Xj,t|λ are normally distributed, i.e.,

Xj,t|λ ∼ N(µ+ λ, σ2
x) for j = 1, 2, . . . , I, and t = 1, 2, . . . , T,

where µ is a constant which is used for all individuals and needs to be chosen. We

assume the common effect Λ satisfies assumption L2. In this case, we can write the

Bayesian premium in the more compact form of the credibility formula. That is we

have the following theorem.

Theorem 4.4. Suppose the random variable Λ and the random vector X⃗ satisfy all

assumptions as in Lemma 4.1. Assume further that Xj,t|λ and common effect Λ satisfy

N1 and L2, respectively. Then the Bayesian premium can be written as

E[Xj,T+1|X⃗] =
σ2
λIT

(∑I
i=1

∑T
t=1 xi,t

)
IT

+ σ2
x(µλ + µ)

σ2
λIT + σ2

x

= w1
¯̄X + w2(µλ + µ) (4.31)

for j = 1, 2, . . . , I, where w1 =
σ2
λIT

σ2
λIT+σ2

x
, w2 = 1− w1 =

σ2
x

σ2
λIT+σ2

x
, and

¯̄X =

(∑I
i=1

∑T
t=1 xi,t

)
IT

.

Proof. The proof for this theorem is similar that for Theorem (4.3). By just substi-

tuting normal density for lognormal density in equation (4.15) and then continuing the

proof in the same manner as in Theorem (4.3) one gets the credibility formula (4.31)

The form of expressions (4.31) is the same for all individuals in a group. The

credibility premium to be charged to the group in the next period would thus be

I[w1
¯̄X + w2(µλ + µ1)] for I members in the next time period.
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Asymtotic Properties

There are some interesting asymptotic properties that can be derived from the

credibility premium formulae (4.31). These asymptotic properties are summarized be-

low:

P1. Lack of past claims experience.

If we let T −→ 0, that is, past experience is lacking for all individuals, then we find

that

w1 =
σ2
λIT

σ2
λIT + σ2

x

−→ 0

and

w2 =
σ2
x

σ2
λIT + σ2

x

−→ 1.

The less experience available to the insurer to asses future claims experience, the

more weight it will attach to what it believes (that is, the prior) it should be.

P2. Abundant past claims experience.

If we let T −→ ∞, that is, there is abundance of past experience for all individuals,

then we find that

w1 =
σ2
λIT

σ2
λIT + σ2

x

−→ 1

and

w2 =
σ2
x

σ2
λIT + σ2

x

−→ 0.

This is intuitively appealing as one would expect to attach more weight to indi-

vidual’s own experience.

P3. Abundant group experience.

If we let I −→ ∞, that is, there is abundance of group experience, then we find that

w1 =
σ2
λIT

σ2
λIT + σ2

x

−→ 1

and

w2 =
σ2
x

σ2
λIT + σ2

x

−→ 0.
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Since each individual’s own experience in a group has the same distribution and

there are more experiences available, the weight will attach to individual’s experience

more than what it believes (that is, the prior).

P4. Large variation of individual claims.

We find that as the variability of individual claims increases, that is σ2
x −→ ∞, then

we have

w1 =
σ2
λIT

σ2
λIT + σ2

x

−→ 0

and

w2 =
σ2
x

σ2
λIT + σ2

x

−→ 1.

Thus, when variability in recent experience is high and therefore comparatively

unreliable for risk assessment, we would attach all the weights to our prior beliefs.

P5. Large variation in overall risk parameter.

If σ2
λ −→ ∞, that is, a large variability in overall risk parameter, then we have

w1 =
σ2
λIT

σ2
λIT + σ2

x

−→ 1

and

w2 =
σ2
x

σ2
λIT + σ2

x

−→ 0.

Thus, when variability in risk parameter is high, we would attach all the weights

to recent experience.



CHAPTER V

APPLICATION TO MOTOR INSURANCE

The one-level common effect model of claim dependence described in Chapter

III can be applied to many types of insurance problems, for example, private house-

hold, economic environment or motor insurance. The main purpose of this chapter is

to illustrate the prediction of future claim amounts for each individual by applying the

Bayesian formula (4.12) to an actual motor insurance positive claim data set of 1,296

observations of class 5 for the year 2009. These data were supplied by a non-life insur-

ance company in Thailand. Since these claims were observed in one year only, then the

observed time experience (or period) is t = 1. Let xj,1, j = 1, 2, . . . , 1296 denote these

observations and Xj,1, j = 1, 2, . . . , 1296 be the corresponding random variables.

Using the K-S test, these 1,296 observations can be matched to a lognormal

distribution, i.e. X ∼ LN(α, β2), with a pdf

fX(x) =
1

β
√
2π

e
− 1

2

(
lnx−α

β

)2

,

at a significance level of 0.10 with the estimated parameters,

α = 8.9662 and β = 1.1804. (5.1)

We note that the mean of this lognormal is

e8.9662+
(1.1804)2

2 = 15, 738.60798. (5.2)

The historical data of claim severity and claim frequency are illustrated in figure 5.1

and figure 5.2, respectively.
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Figure 5.1 Actual claim amounts(Baht) from 1,296 observations(t = 1).

Figure 5.2 Frequency of claim amounts(Baht) from data.
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5.1 Model Assumptions and Parameter used in Illustration

5.1.1 Claim amount assumptions

In order to predict future claim amounts, i.e. E[Xj,2|X⃗], j = 1, 2, . . . , 1296, we

divide the prediction into two cases.

Case 1. We consider the case in which individual risks Xj,1, j = 1, 2, . . . , 1296 are

homogeneous, i.e., each individual’s claim amounts has the same parameter µ+ λ and

σx, and each Xj,1 is lognormally distributed. So we have

Xj,1|λ ∼ LN(µ+ λ, σ2
x) for j = 1, 2, . . . , 1296,

where µ and σx are constants and use for all individuals and need to be chosen

Case 2. We consider the case in which individual risks Xj,1, j = 1, 2, . . . , 1296 are

inhomogeneous, i.e., each individual’s claim amounts has distinct parameters µj + λ

where µj is a constant depending on individual j but has the same parameter σx. So

we have

Xj,1|λ ∼ LN(µj + λ, σ2
x) for j = 1, 2, . . . , 1296.

5.1.2 Process for Calculating Bayesian premium

As an illustration, we show how to compute the Bayesian premium

E[Xj,2|X⃗], j = 1, 2, . . . , 1296, for each individual j by using equation (4.12) when the

individual risks are inhomogeneous. We use model descriptions as in MD2 (see Table

1).

To find the Bayesian premium, we firstly measure the dependence between indi-

vidual risks, which will be denoted by λ. In order to illustrate how the common effect

has an influence on the Bayesian premium, we let, for example,

µλ = 5, σ2
λ = 100, and λ = 6.

We assume further that

σx = β = 1.1804,



48

where β appears in (5.1). Now, only the value of µj needs to be chosen in a suitable

manner. We propose one method for handling this problem by letting µj, j = 1, 2, , 1296

be the convex summand of w1 and m, i.e

µj = w1µ̃j + (1− w1)m, 0 ≤ w1 ≤ 1 (5.3)

where µ̃j and m solve the following equations

xj,1 = e(µ̃j+λ)+
σ2
x
2 and 15, 738.60798 = e(m+λ)+

σ2
x
2 , (5.4)

respectively.

Specifically, let j = 10 so x10,1 = 2, 500 (the tenth element in the set of actual

data) and by putting λ = 6, σx = 1.1804 into equation (5.4), one obtains m = 2.9672

and µ̃j = 1.12737. Hence, (5.3) implies

µj = w1(1.12737) + (1− w1)(2.9672).

Finally, choose w1 = 0.5, one obtains µ1 = 2.04729. Then equation (11) yields

E[X1,2|X⃗] = 8, 891.19699

as appears in the second row and sixth column of Table 5.2.

In the homogeneous cases, The Bayesian premiums are computed in a similar

manner by setting µj = µ = 2.9672, j = 1, 2, . . . , 1296 and using model descriptions

as in MD1 (see Table 5.1). One gets

E[Xj,2|X⃗] = 15, 746.94027, j = 1, 2, . . . , 1296

as appears in the third column of Table 5.2.
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Table 5.1 Summary of given information from the actual data, assumptions and

parameters used in models.

Specification Model Descriptions

Case1: Homogeneous Class

Conditional density Xj,t|λ ∼ LN(µ+ λ, σ2
x),

for j = 1, 2, . . . , I and t = 1, 2, . . . , T

Overall common effect λ ∼ N(µλ, σ
2
λ)

Given information I = 1, 296,
∑1296

i=1 lnXi,1 = 11, 621.48, σx = 1.1804

Assumption µ+ λ = 8.9672

Parameter values (MD1) µλ = 5, σ2
λ = 100, λ = 6

Case2: Inhomogeneous Class (various w1)

Conditional density Xj,t|λ ∼ LN(µj + λ, σ2
x),

for j = 1, 2, . . . , I and t = 1, 2, . . . , T

Overall common effect λ ∼ N(µλ, σ
2
λ)

Given information I = 1, 296,
∑1296

i=1 lnXi,1 = 11, 621.48, σx = 1.1804

Assumption µi = w1µ̃i + (1− w1)m, 0 < w1 < 1

where µ̃i = ln
(

Xi

eλ+
σ2
x
2

)
, m = 2.96720

Parameter values (MD2.1) µλ = 5, σ2
λ = 100, λ = 6, w1 = 0.1

Parameter values (MD2.2) µλ = 5, σ2
λ = 100, λ = 6, w1 = 0.3

Parameter values (MD2.3) µλ = 5, σ2
λ = 100, λ = 6, w1 = 0.5

Parameter values (MD2.4) µλ = 5, σ2
λ = 100, λ = 6, w1 = 0.7

Parameter values (MD2.5) µλ = 5, σ2
λ = 100, λ = 6, w1 = 0.9
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5.2 Results and Discussion

When using the one-level common effect model with the information in Table

1, the Bayesian premiums corresponding to equation (4.12) are illustrated as follows.

Figure 5.3 shows the resulting Bayesian premiums using model MD1 compared with

observed claim of each individual in the year 2009. Figure 5.4 to Figure 5.8 show the

resulting Bayesian premiums using model MD2.1 - MD2.5, respectively.

Some Bayesian premiums corresponding to observed claim xj,1 and the result

statistics for prediction are shown in Table 2 and Table 3, respectively.

Figure 5.3 Bayesian premiums computed by models MD1.
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Figure 5.4 Bayesian premiums computed by models MD2.1.

Figure 5.5 Bayesian premiums computed by models MD2.2.
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Figure 5.6 Bayesian premiums computed by models MD2.3.

Figure 5.7 Bayesian premiums computed by models MD2.4.
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Figure 5.8 Bayesian premiums computed by models MD2.5.
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Table 5.2 Some results for Bayesian premiums, according to MD1-MD2.5.

Individual Observed MD1 MD2.1 MD2.2 MD2.3 MD2.4 MD2.5

no. (j) Claim(xj,1)

36 500 15,747 11,958 6,895 3,976 2,293 1,322

10 2,500 15,747 14,046 11,175 8,891 7,074 5,628

49 5,500 15,747 15,198 14,157 13,188 12,285 11,443

12 9,500 15,747 16,052 16,680 17,332 18,010 18,715

39 15,130 15,747 16,817 19,179 21,873 24,946 28,450

269 20,957 15,747 17,373 21,148 25,743 31,336 38,144

282 30,323 15,747 18,027 23,627 30,965 40,583 53,189

926 40,987 15,747 18,579 25,862 36,001 50,114 69,761

476 50,029 15,747 18,953 27,456 39,774 57,619 83,470

61 74,779 15,747 19,730 30,974 48,627 76,340 119,848

613 100,000 15,747 20,312 33,796 56,233 93,564 155,678

255 152,800 15,747 21,192 38,380 69,511 125,891 228,002

683 194,405 15,747 21,708 41,255 78,405 149,006 283,184

144 300,000 15,747 22,671 46,990 97,398 201,879 418,444

749 428,012 15,747 23,491 52,276 116,337 258,897 576,154

408 899,879 15,747 25,303 65,332 168,687 435,548 1,124,590
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Table 5.3 Some descriptive statistic for Bayesian premiums, according to MD1-

MD2.5.

Statistics Observed MD1 MD2.1 MD2.2 MD2.3 MD2.4 MD2.5

Claim(xj,1)

Minimum 159 15,747 11,958 6,895 3,976 2,293 1,322

Maximum 899,879 15,747 14,046 11,175 8,891 7,074 5,628

Mean 17,662 15,747 15,198 14,157 13,188 12,285 11,443

Median 7,297 15,747 16,052 16,680 17,332 18,010 18,715

Mode 1,800 15,747 16,817 19,179 21,873 24,946 28,450

Variance ≈1,708 ≈0 ≈3.69 ≈4.38 ≈197 ≈781 ≈3,252

(×106)

Aggregate ≈22.89 ≈20.41 ≈20.55 ≈21.79 ≈24.63 ≈29.86 ≈39.03

claim(×106)

From Table 5.3, we note that the aggregate claim amounts increase if the weight w1

corresponding to equation (5.3) approaches 1.

Next, we illustrate how the common effect has affects the Bayesian premium by

using the same parameters as in model MD1-MD2.5, i.e, set µλ = 5, σ2
λ = 100, w1 = 0.5

but vary in λ. The model descriptions are shown in Table 5.4
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Table 5.4 Summary of given information from the actual data, assumptions and

parameters used in models (with various λ).

Specification Model Descriptions

Case2: Inhomogeneous Class

Conditional density Xj,t|λ ∼ LN(µj + λ, σ2
x),

for j = 1, 2, . . . , I and t = 1, 2, . . . , T

Overall common effect λ ∼ N(µλ, σ
2
λ)

Given information I = 1, 296,
∑1296

i=1 lnXi,1 = 11, 621.48, σx = 1.1804

Assumption µi = w1µ̃i + (1− w1)m, 0 < w1 < 1

where µ̃i = ln
(

Xi

eλ+
σ2
x
2

)
, m = 2.96720

Parameter values (MD3.1) µλ = 5, σ2
λ = 100, w1 = 0.5, λ = 2

Parameter values (MD3.2) µλ = 5, σ2
λ = 100, w1 = 0.5, λ = 4

Parameter values (MD3.3) µλ = 5, σ2
λ = 100, w1 = 0.5, λ = 8

Parameter values (MD3.4) µλ = 5, σ2
λ = 100, w1 = 0.5, λ = 10

Figure 5.9 to Figure 5.12 show the resulting Bayesian premiums using model MD3.1 -

MD3.4, respectively. Some Bayesian premiums corresponding to observed claim xj,1

and the results statistics for prediction are shown in Table 5.5 and Table 5.6, respec-

tively.
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Figure 5.9 Bayesian premiums computed by models MD3.1.

Figure 5.10 Bayesian premiums computed by models MD3.2.
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Figure 5.11 Bayesian premiums computed by models MD3.3.

Figure 5.12 Bayesian premiums computed by models MD3.4.
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Table 5.5 Some results for Bayesian premiums, according to MD3.1-MD3.4.

Individual Observed MD1 MD3.1 MD3.2 MD3.3 MD3.4

no. (j) Claim(xj,1)

36 500 15,747 3,976.42 3,976.34 3,976.19 3,976.10

10 2,500 15,747 8,891.95 8,891.38 8,891.02 8,890.84

49 5,500 15,747 13,188.30 13,188.04 13,187.51 13,187.25

12 9,500 15,747 17,332.82 17,332.48 17,331.79 17,331.44

39 15,130 15,747 21,873.94 21,873.50 21,872.63 21,872.19

269 20,957 15,747 15,743.77 25,743.26 25,742.23 25,741.71

282 30,323 15,747 30,966.61 30,965.99 30,964.75 30,964.13

926 40,987 15,747 36,002.33 36,001.61 36,000.17 35,999.45

476 50,029 15,747 39,775.76 39,774.97 39,773.38 39,772.58

61 74,779 15,747 48,629.23 48,628.26 48,626.32 48,625.34

613 100,000 15,747 56,235.11 56,233.99 56,231.74 56,230.62

255 152,800 15,747 69,513.51 69,512.13 69,509.35 69,507.96

683 194,405 15,747 78,408.16 78,406.60 78,403.47 78,401.90

144 300,000 15,747 97,402.06 97,400.13 97,396.24 97,394.29

749 428,012 15,747 116,341.73 116,339.40 116,334.80 116,332.40

408 899,879 15,747 168,693.98 168,690.63 168,683.89 168,680.51
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Table 5.6 Some descriptive statistic for Bayesian premiums, according to MD3.1-

MD3.4.

Statistics Observed MD1 MD3.1 MD3.2 MD3.3 MD3.4

Claim(xj,1)

Minimum 159 15,747 2,242.36 2,242.32 2,242.23 2,242.18

Maximum 899,879 15,747 168,693.98 168,690.63 168,683.89 168,680.51

Mean 17,662 15,747 19,007.41 19,007.03 19,006.27 19,005.89

Median 7,297 15,747 15,190.24 15,189.94 15,189.33 15,189.03

Mode 1,800 15,747 7,544.73 7,544.58 7,544.28 7,544.13

Variance ≈1,708 ≈0 ≈197.425 ≈197.418 ≈197.402 ≈197.394

(×106)

Aggregate ≈22.89 ≈20.41 ≈24.6336 ≈24.6331 ≈24.6321 ≈24.6316

claim(×106)

From Table 5.5, we see that these values of the Bayesian premiums change only a little

bit as the value of λ changes. However, note that these parameter values which are

used in model (λ, µλ = 5, σλ = 100, w1), are chosen in order to illustrate the process

for calculating Bayesian premiums, they are nothing more than suggestive values which

still need to be justified.

In this study, we don’t investigate the process of measuring the common effect

between risks. To obtain this process is still an interesting problem needing further

investigation, the same is true for the problem of justifying the value of w1. However,

one can include other factors from their portfolios (e.g. cause of claim) to justify the

appropriacy of this value.



CHAPTER VI

CONCLUSIONS

This thesis is devoted to the study of claim dependence models. In this study, we

propose a model for claim dependence between risks (claim dependence across insured

individuals) by using common effect and also investigate the Bayesian premium for each

individual according to the model. The results obtained are separated into two parts.

In the first part, we study the claim dependence model with the following as-

sumptions:

A1. The common effect random variable Λ has known probability density

function fΛ(λ) provided that fΛ(λ) > 0 for all λ.

A2. For a fixed i = 1, 2, . . . , I, the random variables Xi,t, t = 1, 2, . . . , T are

mutually independent and identically distributed.

A3. The random vectors X⃗i|Λ = λ, i = 1, 2, . . . , I where X⃗i = (Xi,1,

Xi,2, . . . , Xi,T )
′
are conditionally independent.

A4. For a fixed i = 1, 2, . . . , I and a fixed t = 1, 2, . . . , T , the conditional

random variable Xi,t given that Λ = λ has known probability function denoted by

fXi,t|Λ(xi,t|λ) =:
fXi,t,Λ(xi,t, λ)

fΛ(λ)
.

We consider three classes of premiums:

△0 := R

△1 := L2(σ(Λ))

△I := L2(σ(X1,1, X1,2, . . . , X1,T , . . . , XI,1, . . . , XI,T ) (6.1)
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and study three premiums: p0, p1 and p2 satisfying

E[(Xi,T+1 − p0)
2] := inf

△0

E[(Xi,T+1 − p)2]

E[(Xi,T+1 − p1)
2] := inf

△1

E[(Xi,T+1 − p)2]

E[(Xi,T+1 − p2)
2] := inf

△I

E[(Xi,T+1 − p)2]. (6.2)

Based on these assumptions, we define

µ := E[Xi,T+1] = E[E[Xi,T+1|Λ]],

v := E[var(Xi,T+1|Λ)],

a := var(E[Xi,T+1|Λ]), (6.3)

The results are summarized as follows:

Proposition 6.1. For the optimum premiums p0, p1, p2 and a fixed individual i =

1, 2, . . . , I we have:

(a) p0 = µ

(b) p1 = E[Xi,T+1|Λ]

(c) p2 = E[Xi,T+1|X⃗] = E[E[Xi,T+1|Λ)|X⃗]].

In particular, p2 = E[p1|X⃗].

Proposition 6.2. For the loss attached to these premiums and a fixed individual i =

1, 2, . . . , I, we have:

(a) E[(Xi,T+1 − p0)
2] = v + a

(b) E[(Xi,T+1 − p1)
2] = v

(c) E[(Xi,T+1 − p2)
2] = v + E[var(E[Xi,T+1|Λ]|X⃗)]

In particular, E[(Xi,T+1 − p1)
2] ≤ E[(Xi,T+1 − p2)

2] ≤ E[(Xi,T+1 − p0)
2].

Further, this thesis is mainly interested in the Bayesian premium which can be

conveniently expressed as

E[Xj,T+1|X⃗] =

∫
xj,T+1 · fXj,T+1|X⃗(xj,T+1|x⃗)dxj,T+1. (6.4)
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To obtain an explicit form of the premium for arbitrary claim amounts distribution and

common effect distribution, we need the following theorems which are summarized as

follows:

Lemma 6.3. Let Λ be a random variable satisfying the assumptions A1 to A4 and

X⃗ be the vector of all observable claims which is defined in (4.1). The joint density of

X⃗ and the overall risk parameter Λ can be expressed as

fX⃗,Λ(x⃗, λ) =
I∏

i=1

fX⃗i|Λ(⃗xi|λ)× fΛ(λ). (6.5)

Theorem 6.4. Suppose the random variable Λ and the random vector X⃗ satisfy all

assumptions as in Lemma 6.3. The conditional density of Xj,T+1|X⃗ can be expressed

as

fXj,T+1|X⃗(xj,T+1|x⃗) =

∫
fXj,T+1|Λ(xj,T+1|λ)× fΛ|X⃗(λ|x⃗) dλ. (6.6)

In the second part, we use equation (6.4) to find the Bayesian premium by

applying Theorem 6.4 when the common effect is normally distributed and the claim

amounts follow lognormal or normal distribution. We divide our investigation into two

cases.

Case 1. Bayesian premiums with lognornal claim amounts.

We make the following assumptions:

L1. the random variables Xj,t|λ are lognormally distributed, i.e.,

Xj,t|λ ∼ LN(µj + λ, σ2
x) for j = 1, 2, . . . , I, and t = 1, 2, . . . , T,

where µj is a constant depending on individual j.

L2. the overall common effect λ is normally distributed with mean µλ and

variance σ2
λ.

A useful application of theorem 6.4 appears in the following theorem.

Theorem 6.5. Suppose the random variable Λ and the random vector X⃗ satisfy all

assumptions as in lemma 6.3. Assume further that Xj,t|λ and common effect Λ satisfy
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L1 and L2, respectively. Then the Bayesian premium can be written as

E[Xj,T+1|X⃗] = e

[σ2
λ

(∑I
i=1

∑T
t=1 lnXi,t−T

∑I
i=1 µi+µjIT

)
+σ2

x

(
µλ+µj

)
σ2
λ
IT+σ2

x

]
e

[(σ2
λ(IT+1)+σ2

x

)
σ2
x

2(σ2
λ
IT+σ2

x)

]
. (6.7)

for j = 1, 2, . . . , I.

Case 2. Bayesian premiums with normal claim amounts

We make the following assumptions:

N1. the random variables Xj,t|λ are normally distributed, i.e.,

Xj,t|λ ∼ N(µ+ λ, σ2
x) for j = 1, 2, . . . , I, and t = 1, 2, . . . , T.

where µ is a constant which is used for all individuals and need to be chosen. We

assume a common effect Λ satisfies assumption L2.

Theorem 6.6. Suppose the random variable Λ and the random vector X⃗ satisfy all

assumptions as in lemma 6.3. Assume further that Xj,t|λ and common effect Λ satisfy

N1 and L2, respectively. Then the Bayesian premium can be written as

E[Xj,T+1|X⃗] =
σ2
λIT

(∑I
i=1

∑T
t=1 xi,t

)
IT

+ σ2
x(µλ + µ)

σ2
λIT + σ2

x

= w1
¯̄X + w2(µλ + µ) (6.8)

for j = 1, 2, . . . , I, where w1 =
σ2
λIT

σ2
λIT+σ2

x
, w2 = 1 − w1 = σ2

x

σ2
λIT+σ2

x
, and ¯̄X =(∑I

i=1

∑T
t=1 xi,t

)
IT

.

An application part of lognormal claim amounts (chapter VI) shows the process

for calculating the Bayesian premiums. The interpretation of a common effect in the

claim dependence model is illustrated in the context of automobile insurance by using

an actual claims data set.

Finally, we should observe that further problems can be considered. Firstly, for

the Bayesian premium with lognormal claims (see, equation (5.3)) one needs to choose

the weight attached to each individual. To obtain a suitable weight is still an interesting

problem needing further investigation. However, one can include other factors from
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their portfolios to justify the appropriacy of this value. Secondly, the modeling claim

dependence using common effect in the proposed model requires distribution formulas

for both risks and common effect which could lead to a cumbersome process for obtaining

the required premiums. One can conduct further investigations by omitting the form

for distributions and using other methodologies such as the means of the projection

method involving significant constraints (analogous to Wen et al., 2009).
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APPENDICES



APPENDIX A

THE PROOF OF SOME PARTS IN

THEOREM 4.3

Appendix A1

We show that equation (4.17) holds,i.e.,

∫
1

2π
e
− 1

2

[∑T+1
t=1

(
lnx1,t−(µ1+λ)

σx

)2

+
∑I

i=2

∑T
t=1

(
lnxi,t−(µi+λ)

σx

)2]
× e

− 1
2

(
λ−µλ
σλ

)2

dλ

=

∫
1

2π
e
− IT+1

2σ2
x

[(
λ−

(∑I
i=1

∑T
t=1 lnxi,t+lnx1,T+1

)
−
(
T

∑I
i=1 µi+µ1

)
IT+1

)2]
e
− 1

2

(
λ−µλ
σλ

)2

× e
− 1

2σ2
x

[
−
([∑I

i=1
∑T

t=1 lnxi,t+lnx1,T+1

]
−
[
T

∑I
i=1 µi+µ1

])2

IT+1

]

× e
− 1

2σ2
x

[ (∑I
i=1

∑T
t=1(lnxi,t)

2+(lnx1,T+1)
2
)
−2
(∑I

i=1(µi
∑T

t=1 lnxi,t)+(lnx1,T+1·µ1)
)]

× e
− 1

2σ2
x

[(
T
∑I

i=1 µ
2
i+µ2

1

)]
dλ.

It suffices to show that

e
− 1

2

[∑T+1
t=1

(
lnx1,t−(µ1+λ)

σx

)2

+
∑I

i=2

∑T
t=1

(
lnxi,t−(µi+λ)

σx

)2]

= e
− IT+1

2σ2
x

[(
λ−

(∑I
i=1

∑T
t=1 lnxi,t+lnx1,T+1

)
−
(
T

∑I
i=1 µi+µ1

)
IT+1

)2]

× e
− 1

2σ2
x

[
−
([∑I

i=1
∑T

t=1 lnxi,t+lnx1,T+1

]
−
[
T

∑I
i=1 µi+µ1

])2

IT+1

]

× e
− 1

2σ2
x

[ (∑I
i=1

∑T
t=1(lnxi,t)

2+(lnx1,T+1)
2
)
−2
(∑I

i=1(µi
∑T

t=1 lnxi,t)+(lnx1,T+1·µ1)
)]

× e
− 1

2σ2
x

[(
T
∑I

i=1 µ
2
i+µ2

1

)]
.

Proof. The proof is straightforward by applying the square operation to grouping the

term of λ in the form of normally distributed.
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e
− 1

2

[∑T+1
t=1

(
lnx1,t−(µ1+λ)

σx

)2

+
∑I

i=2

∑T
t=1

(
lnxi,t−(µi+λ)

σx

)2]

= e
− 1

2

[∑I
i=1

∑T
t=1

(
lnxi,t−(λ+µi)

σx

)2

+

(
lnx1,T+1−(λ+µ1)

σx

)2]

= e
− 1

2σ2
x

[∑I
i=1

∑T
t=1

(
(lnxi,t)

2−2lnxi,tλ−2lnxi,tµi+λ2+2λµi+µ2
i

)]

× e
− 1

2σ2
x

[(
(lnx1,T+1)

2−2lnx1,T+1λ−2lnx1,T+1µ1+λ2+2λµ1+µ2
1

)]

= e
− 1

2σ2
x

[∑I
i=1

∑T
t=1(lnxi,t)

2−2λ
∑I

i=1

∑T
t=1 lnxi,t−2

∑I
i=1

∑T
t=1 lnxi,tµi+ITλ2+2λT

∑I
i=1 µi

]

× e
− 1

2σ2
x

[
T
∑I

i=1 µ
2
i+(lnx1,T+1)

2−2lnx1,T+1λ−2lnx1,T+1µ1+λ2+2λµ1+µ2
1

]

= e
− 1

2σ2
x

[
λ2(IT+1)−2λ(

∑I
i=1

∑T
t=1 lnxi,t+lnx1,T+1)+2λ(T
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i=1 µi+µ1)

]

× e
− 1

2σ2
x

[ (∑I
i=1

∑T
t=1(lnxi,t)

2+(lnx1,T+1)
2
)
−2
(∑I

i=1

∑T
t=1(lnxi,t·µi)+(lnx1,T+1·µ1)

)]

× e
− 1

2σ2
x

[
T
∑I

i=1 µ
2
i+µ2

1

]

= e
− IT+1

2σ2
x

[
λ2−2λ

(
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∑I

i=1
∑T

t=1 lnxi,t+lnx1,T+1)−(T
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i=1 µi+µ1)

)
IT+1

]

× e
− 1

2σ2
x

[ (∑I
i=1

∑T
t=1(lnxi,t)

2+(lnx1,T+1)
2
)
−2
(∑I

i=1

∑T
t=1(lnxi,t·µi)+(lnx1,T+1·µ1)

)]

× e
− 1

2σ2
x

[
T
∑I

i=1 µ
2
i+µ2

1

]

= e
− IT+1

2σ2
x

[(
λ−

(∑I
i=1

∑T
t=1 lnxi,t+lnx1,T+1

)
−
(
T

∑I
i=1 µi+µ1

)
IT+1

)2]

× e
− 1

2σ2
x

[
−
([∑I

i=1
∑T

t=1 lnxi,t+lnx1,T+1

]
−
[
T

∑I
i=1 µi+µ1

])2

IT+1

]

× e
− 1

2σ2
x

[ (∑I
i=1

∑T
t=1(lnxi,t)

2+(lnx1,T+1)
2
)
−2
(∑I

i=1(µi
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t=1 lnxi,t)+(lnx1,T+1·µ1)
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× e
− 1

2σ2
x

[
T
∑I

i=1 µ
2
i+µ2

1

]
.

This concludes the proof.
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Appendix A2

We show that equation (4.20) is true. First, we recall the proposition of Valdez (2004):

Proposition 1.1. Suppose Z ∼ N(0, 1), the standard normal random variable. Then

the following holds for any constant a and b:

E[φ(a− bz)] =
1√

1 + b2
· φ( a√

1 + b2
). (A.1)

Proof. The proof is straightforward integration problem. First, notice that we can

re-write

φ(z)φ(a− bz) =
1√
2π

· 1√
2π

· e
(
− 1

2
[z2+(a−bz)2]

)
=

1√
2π

· 1√
2π

· e
(
− 1

2
[z2(1+b)2−2abz+a2]

)

=
1√
2π

e

(
− 1

2
[a2− a2b2

1+b2
]
)
· 1√

2π
e

(
− 1

2

[ z− ab
1+b2
1√
1+b2

]2)
.

After completing squares. Further simplifying, we have

φ(z)φ(a− bz) =
1√
2π

e

(
− 1

2
[ a√

1+b2
]
)
· 1√

2π
e

(
− 1

2

[ z− ab
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1√
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]2)
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1 + b2
)φ(
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1+b2

1√
1+b2

).

It follows that

E[φ(a− bz)] =

∫ ∞

−∞
φ(z) · φ(a− bz)dz

= φ(
a√

1 + b2
)

∫ ∞

−∞
φ(

z − ab
1+b2

1√
1+b2

)dz

= φ(
a√

1 + b2
) · 1√

1 + b2
.

In other words, ∫ ∞

−∞
φ(z) · φ(a− bz)dz =

1√
1 + b2

· φ( a√
1 + b2

). (A.2)

This concludes the proof.
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Next, we apply the useful result (A.2) to our work, i.e., to show∫
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Consider the left-hand side of (A.2)∫
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And the right-hand side of (A.2) yields
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From equation (A.2), it follows∫
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The proof is now complete.
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THE PROOF OF LEMMA 3.1

Lemma 3.1. For a fixed i = 1, 2, . . . , I, The identity

E[(Xi,T+1 − p)2] = E[(Xi,T+1 − E[Xi,T+1|Λ])2] + E[(E[Xi,T+1|Λ]− p)2]

holds for all p ∈ △I .

Proof. Let X1,1, X1,2, . . . , X1,T , . . . , XI,1, . . . , XI,T , X be conditionally independent

random variables with respect to Λ and

△I := L2(σ(X1,1, X1,2, . . . , X1,T , . . . , XI,1, . . . , XI,T ).

It suffices to show that

E[(X − p)2] = E[(X − E[X|Λ])2] + E[(E[X|Λ]− p)2]

holds for all p ∈ △I . Consider

E[(X − E[X|Λ])2] + E[(E[X|Λ]− p)2]

= E[(X2 − 2XE[X|Λ] + (E[X|Λ])2] + E[(E[X|Λ])2 − 2E[X|Λ]p+ p2]

= E[X2]− 2E[XE[X|Λ]] + E[(E[X|Λ])2] + E[(E[X|Λ])2]− 2E[E[X|Λ]p] + E[p2]

= E[X2]− 2E[X]E[E[X|Λ]] + 2(E[E[X|Λ]])2 − 2E[E[X|Λ]]E[p] + E[p2]

= E[X2]− 2(E[X])2 + 2([E[X])2 − 2E[E[X|Λ]]E[p] + E[p2]

= E[X2]− 2E[X]E[p] + E[p2]

= E[(X − p)2].

This concludes the proof.



APPENDIX C

PROBABILITY THEORY

We recall some definitions and theorems in probability theory. Most of these

results can be found in Brzeźniak and Zastawniak (1999), Capiński and Kopp (2004),

and Aggoun and Elliott (2004).

Definition C.1. Let Ω be a non-empty set. A σ-field F on Ω is a family of a subsets

of Ω such that

1. the empty set ∅ belongs to F ;

2. if A belongs to F , then so does the complement Ω \ A;

3. if A1, A2, · · · is a sequence of sets in F , then their union A1∪A2∪· · · also belongs

to F .

Definition C.2. Let F be a σ-field on Ω. A probability measure P is a function

P : F → [0, 1]

such that

1. P(Ω) = 1;

2. if A1, A2, · · · are pairwise disjoint set (that is, Ai ∩Aj = ∅ for i ̸= j) belonging to

F , then

P(A1 ∪ A2 ∪ · · · ) = P(A1) + P(A2) + · · · .

The triple (Ω,F ,P) is called a probability space. The sets belonging to F is called

events. An event A is said to occur almost surely (a.s.) whenever P(A) = 1.
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Definition C.3. If F is a σ-field on Ω, then a function X : Ω → R is said to be

F -measurable if

(X ∈ B) := {ω ∈ Ω : X(ω) ∈ B} = X−1(B) ∈ F

for every Borel set B ∈ B(R). If (Ω,F ,P) is a probability space, then such a function

X is called a random variable.

Definition C.4. The σ-field σ(X) generated by a random variable X : Ω → R consists

of all sets of the form (X ∈ B), where B is a Borel set in R.

Lemma C.1 (Doob-Dynkin). Let X be a random variable. Then each σ(X)-

measurable random variable Y can be written as

Y = f(X)

for some Borel function f : R → R.

Definition C.5. Every random variable X : Ω → R gives rise to a probability measure

PX(B) = P(X ∈ B)

on R defined on the σ-field of Berel sets B ∈ B(R). We call PX the distribution of X.

The function FX : R → [0, 1] defined by

FX(x) = P(X ≤ x)

is called the distribution function of X.

Definition C.6. If there is a Borel function fX : R → R such that for any Borel set

B ⊂ R

P(X ∈ B) =

∫
B

fX(x)dx

then X is said to be a random variable with absolutely continuous distribution and fX

is called density of X. If there is a (finite or infinite) sequence of pairwise distinct real

numbers x1, x2, · · · such that for any Borel set B ⊂ R

P(X ∈ B) =
∑
xi∈B

P(X = xi),
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then X is said to have discrete distribution with value x1, x2, · · · and mass

P(X = xi) at xi.

Definition C.7. A random variable X : Ω → R is said to be integrable if∫
Ω

|X|dP < ∞.

Then

E[X] :=

∫
Ω

XdP

exist and is called the expectation of X.

Definition C.8. Two events A,B ∈ F are called independent if

P(A ∩B) = P(A)P(B).

In general, we say that n events A1, A2, · · · , An ∈ F are independent if

P(Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = P(Ai1)P(Ai2) · · ·P(Aik)

for any indices 1 ≤ i1 < i2 < · · · < tk ≤ n.

Definition C.9. Two random variable X and Y are called independent if for any Borel

sets A,B ∈ B(R) the two events

(X ∈ A) and (Y ∈ B)

are independent. We say that n random variable X1, X2, · · · , Xn are independent if for

any Borel sets B1, B2, · · · , Bn ∈ B(R) the events

(X1 ∈ B1), (X2 ∈ B2), · · · , (Xn ∈ Bn)

are independent.

Definition C.10. Two σ-fields G and H contain in F are called independent if any

two events A ∈ G and B ∈ H are independent. Similarly, any finite number of σ-fields

G1,G2, · · · ,Gn contained in F are independent if any n events

A1 ∈ G1, A2 ∈ G2, · · · , An ∈ Gn

are independent.
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Definition C.11. We say that a random variable X is independent of σ-field G if the

σ-fields σ(X) and G are independent.

Theorem C.2 (Lebesgue’s Dominated Convergence Theorem). Suppose

{Xn, n ∈ N} is a sequence of random variables such that |Xn| ≤ Y a.s. where Y is an

integrable random variable. If Xn converses to X a.s., then Xn and X are integrable,

lim
n→∞

∫
Ω

XndP = lim
n→∞

∫
Ω

XdP

and

lim
n→∞

∫
Ω

|Xn −X|dP = 0.

Theorem C.3. Let (Ω,F ,P) be a probability space. Given a random variable X :

Ω → R, ∫
Ω

g(X(ω))dP(ω) =

∫
R
g(x)dPX(x).

Theorem C.4. If PX defined on Rn is absolutely continuous with density fX ,

g : Rn → R is integrable with respect to PX , then∫
Rn

g(x)dPX(x) =

∫
Rn

fX(x)g(x)dx.

Corollary C.5. In the situation of the previous theorem we have∫
Ω

g(X)dP =

∫
Rn

fX(x)g(x)dx.

Theorem C.6. Let (Ω,F ,P) be a probability space. Let X be a real random variable

and B a Borel set. Then∫
B

g(x)dFX(x) =

∫
X−1(B)

g(X(ω))dP(ω).

Here g is a Borel function and where B = R∫
R
g(x)dFX(x) =

∫
Ω

g(X(ω))dP(ω).
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Comotonicity

Let x⃗ = (x1, x2, . . . , xn) be a set of n-vector in Rn. For two n-vector x⃗ and y⃗, the

notation x⃗ ≤ y⃗ will be used for the componentwise order which is defined by xi ≤ yi

for all i = 1, 2, . . . , n.

Definition C.12 (Comotonic set). The set A ⊂ Rn is comotonic if for any x⃗ and y⃗ in

A, either x⃗ ≤ y⃗ or y⃗ ≤ x⃗ holds.

So, a set A ⊂ Rn is comotonic if for any x⃗ and y⃗ in A, the inequality xi ≤ yi

for some i, implies that x⃗ ≤ y⃗. As a comotonic set is simultaneously non-decreasing

in each component, it is also called a nondecreasing set. Notice that any subset of

comotonic set is also comotonic.

Next, we define a comotonic random vector X⃗ = (X1, X2, . . . , Xn) through its

support. A support of random vector X⃗ is a set A ⊂ Rn for which P (X⃗ ∈ A) = 1.

Definition C.13 (Comotonic random vector). A random vector X⃗ = (X1, X2, . . . , Xn)

is comotonic if it has a comotonic support.

From the definition, we can conclude that comotonicity is a very strong positive

dependency structure. Indeed, if x⃗ and y⃗ are elements of the (comotonic) support of

X⃗, i.e. x⃗ and y⃗ are possible outcomes of X⃗, then they must be ordered componentwise.

This explains why the term comotomic (common monotonic) is used.



APPENDIX D

FUNCTIONAL ANALYSIS

We recall some definition and theorem from functional analysis. Most of these

results can be found in Kreyszig (1998) and Apostol (1974).

Theorem D.1 (Continuous Mapping). A mapping T : X → Y of a metric space (X, d)

into a metric space (Y, d̃) is continuous at a point x0 ∈ X if and only if

xn → x0 implies Txn → Tx0.

Definition D.1. A metric space X is said to be compact if every sequence in X has a

convergent subsequence. A subset M of X is said to be compact if M is compact consid-

ered as a subspace of X, that is, if every sequence in M has a convergent subsequence

whose limit is an element in M .

Theorem D.2 (Compactness). In a finite dimensional normed space X, any subset

M ⊂ X is compact if and only if M is closed and bounded.

Theorem D.3 (Continuous Mapping). Let X and Y be metric spaces and

T : X → Y . Then the image of a compact subset M of X under T is compact.

Corollary D.4 (Maximum and Minimum). A continuous mapping T of a compact

subset M of a metric space X into R assumes a maximum and a minimum at some

points of M .

Theorem D.5 (Canter Intersection Theorem).

Let {F1, F2, F3, · · · } be a countable collection of nonempty sets in Rm such that:

(i) Fn+1 ⊂ Fn, n ∈ N;

(ii) each set Fn is closed and F1 is bounded. Then the intersection ∩∞
n=1Fn is closed

and nonempty.
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Definition D.2 (Orthogonality). An element x of an inner product space X is said to

be orthogonal to an element y ∈ X if

⟨x, y⟩ = 0.

Theorem D.6 (Schwarz Inequality). An inner product and the corresponding norm

satisfy the Schwarz inequality, i.e.,

|⟨x, y⟩| ≤ ∥x∥∥y∥.

Theorem D.7 (Minimizing Vector). Let X be an inner product space and M ̸= ∅ a

convex subset which is complete (in the metric induced by the inner product). Then

for every given x ∈ X there exists a unique y ∈ M such that

δ = inf
ỹ∈M

∥x− ỹ∥ = ∥x− y∥.

Theorem D.8 (Orthogonality). In theorem D.7, let M be a complete subspace Y and

x ∈ X fixed. Then z = x− y is orthogonal to Y .

Definition D.3 (Direct Sum). A vector space X is said to be the direct sum of two

subspaces of Y and Z , written

X = Y ⊕ Z,

if each x ∈ X has a unique representation

x = y + z

for some y ∈ Y and z ∈ Z. Then Z is called algebraic complement of Y in X and vice

versa, and Y, Z is called a complement pair of subspaces in X.

In the case of a general Hilbert space H, the main interest concerns representa-

tions of H as a direct sum of a closed subspace Y and its orthogonal complement

Y ⊥ := {z ∈ H : z⊥Y },

which is the set of all vectors orthogonal to Y .
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Theorem D.9 (Direct Sum). Let Y be any closed subset of a Hilbert space H. Then

H = Y ⊕ Z and Y ∩ Z = {0} when Z = Y ⊥.

In theorem D.9, we found that for every x ∈ H there exists and unique a y ∈ Y

and z ∈ Y ⊥ such that x = y+ z, y is called the orthogonal projection of x on Y . Define

a mapping

ρ : H → Y

x 7→ y = ρ(x).

ρ is called the (orthogonal) projection of H onto Y .
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