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CHAPTER I 

INTRODUCTION 

 

1.1 Introduction  

Over recent years, financial markets have become much more volatile compared 

to previous decades. The most difficult task for investors and regulators is to 

accurately measure financial market risks. Financial market risk measurement has 

been addressed by an increasing number of researches (Szegö, 2002; Yamai and 

Yoshiba, 2005; Tsukahara, 2014). Value-at-Risk (VaR), as a statistical approach to 

measure financial market risk, has become a market standard for measuring, 

managing, and reporting market risk (Basak and Shapiro, 2001). VaR provides users 

with a summary measure of market risk and is truly a forward-looking risk measure 

and has turned into the most frequently used risk measure (Alexander, 2009). VaR is 

widely used by banks, securities firms, commodity and energy merchants, and other 

trading organizations.  

VaR is generally defined as the worst expected loss for a given position or 

portfolio within a known confidence interval over a specific time horizon under 

normal market conditions. We use an intuitive example here to understand the VaR. 

Figure 1.1 shows the distribution of the daily returns of NASDAQ100 (Harper, 2008). 

Notice the red bars that compose the “left tail” of the histogram. The red bars run 

from daily losses of 4% to 8%. If given a loss level of 5%, i.e 95% confidence level, 

we expect that our worst daily loss will not exceed 4%, then 4% is VaR. For example, 



 

 

2 

 

if we invest $100, we are 95% confident that our worst daily loss will not exceed $4, 

then $4 is VaR. If given a loss level of 1%, i.e 99% confidence level, we expect that 

the worst daily loss will not exceed 7%, then 7% is VaR. For example, if we invest 

$100, we are 99% confident that our worst daily loss will not exceed $7, then $7 is 

VaR. 

 

 

Figure  1.1  Distribution of Daily Return, NASDAQ 100. 

 

Mathematically VaR at   loss probability level is commonly defined as: 

  qFVaR ttt   )(1

,                                           (1.1) 

where 1

tF   is the inverse function of the conditional cumulative Gaussian distribution 

function at time t  (Franke et al.,2004). q  
denotes the  -th quantile of the 

distribution of innovation term t , i.e. ( )tP q   ,  and t  denotes the volatility. 

Since the VaR can be expressed as t q  , so it is crucial for the calculation of VaR 

to model the distribution of the innovation term and estimate the volatility accurately. 

It is an obvious truth that the volatility of returns plays an important role when 

estimating VaR of returns. Volatility forecasts are important inputs into risk 

../QUESTIONS%20FOR%20COMMITTEE20160401/CHAPTER%205/2.%20accurate%20and%20robust%20still%20not%20clear..docx
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management models. However, a number of empirical studies have concluded that the 

assumption of constant volatility is inadequate to describe stock returns, based on 

three findings: (1) volatilities of stock returns vary over time, but persist at certain 

levels (mean-reversion property); (2) volatilities are correlated with stock returns (Li 

et al., 2005); (3) many financial time series exhibit volatility clustering whereby 

volatility is likely to be high when it has recently been high and volatility is likely to 

be low when it has recently been low. Therefore, modeling time-varying conditional 

volatility t  is an important and interesting topic to study.  

The Stochastic Volatility (SV) model (Taylor, 1986) and the Generalized 

Autoregressive Conditional Heteroscedastic (GARCH) model (Engle, 1982; 

Bollerslev, 1986) are the two classes of models that are often used to estimate and 

forecast unobserved time-varying conditional volatility t . On the one hand, the SV 

model fits the time varying variance as an unobserved component that follows a 

particular stochastic process which is not restricted to follow a deterministic process. 

On the other hand, the GARCH model fits the time varying variance as a 

deterministic function of lagged squared residuals and lagged conditional variance 

and is particularly useful for modeling time-varying conditional volatility. 

 However, a voluminous literature has demonstrated that the occurrence of a 

financial crisis or a change of the economic environment will cause the stock price to 

exhibit sharp volatility, leading to the structural instability of financial markets 

(Cogley and Sargent, 2001; Koop and Potter, 2007). Therefore, the basic SV model 

and GARCH model have difficulties in accurately estimating the time-varying 

volatility. In this study, to address this issue, we improve the basic SV model and 

GARCH model using different tactics to model the time-varying volatility of financial 
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time series respectively.  

First, we propose a new SV model with leverage effect, non-constant 

conditional mean and jump, which considers the nature of structural instability of 

stochastic volatility models in order to avoid the misspecification in the volatility 

process. This SV model is structured based on the following facts: 

(i)  The leverage effect describes the relationship between returns and 

conditional variances. It means that bad news in the markets lead to a boost in the 

variance. The underlying reasoning is that bad news tend to decrease prices, thus 

leading to an increase in debt-to-equity ratio (Figlewski et al., 2000). The firms are 

hence riskier and this translates into an increase in expected future volatility as 

captured by a negative relationship between volatility and return. 

(ii)  The stochastic volatility model can describe the serial correlation on the 

return process explained by unexpected stochastic dividend effects (Eberlein et al., 

2003). In addition, it is important to consider the conditional mean in applications 

related to optimal portfolio choices. The economic theory shows that an investor gains 

from market predictability and volatility timing (Merton, 1971). In order to accurately 

describe the stock returns process, we model the conditional expected value of the 

returns together with the dynamic of the volatilities. Moreover, we model the 

conditional mean of returns via an autoregressive process, which can be explained by 

the non-synchronous trading and unexpected stochastic dividend effects (Chernov et 

al., 2003).  

(iii)  There is substantial evidence in favor of jumps on returns and volatilities 

(Merton, 1976; Eraker et al., 2003; Raggi, 2005). Jumps are an important feature of 

financial markets, which can basically be described as rare events and infrequent but 
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extreme movements in returns. Furthermore, there is some evidence that an extreme 

and rare event influences the conditional mean and the volatility (Liu et al. 2001), so 

we take into account a jumps dynamic in the stochastic volatility model. 

Second, we propose a GARCH model with Normal Inverse Gaussian (NIG) 

distribution. The distribution assumption of the innovative term influences the 

performance of the VaR. It is clear that the accuracy of VaR depends heavily on the 

assumption of the underlying distribution, which often assumes that the involved risk 

factors are normally distributed for reasons of stochastic and numerical simplicity. 

However, many empirical studies have shown that the financial returns have 

leptokurtic distribution with high peak and fat tails (Peiro, 1999; Verhoeven, 2004). 

The NIG distribution is a heavy-tailed distribution that can well replicate the 

empirical distribution of the financial risk factors (Nielsen, 1977; Chen et al., 2008). 

Therefore, in this thesis, we discuss the application of the NIG distribution in 

financial risk measurement. 

Apart from improving the volatility models, we employ the statistical learning 

approach to estimate the proposed volatility models. Statistical learning is a branch of 

statistics aimed at modeling and understanding complex models and datasets. 

Generally speaking, statistical learning aims at estimating a target variable, based on a 

set of inputs, or predictors.  In this thesis, we use Bayes statistical inference and   

support vector regression to enhance the VaR estimation models. Based on the Bayes 

statistical inference theory, we construct an A-PMCMC method used to estimate the 

unknown parameters and latent variables of the stochastic volatility model. Based on 

the support vector regression theory, we proposed a hybrid NIG-MSA model to 

estimate the time-varying volatility of financial return series.  
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The proposed stochastic volatility model with leverage effect, non-constant 

conditional mean and jump belong to the wide class of nonlinear state-space models; 

classical parameter estimation is difficult due to lacking the tractable form of the 

likelihood. Statistical estimation of stochastic volatility models is, however, greatly 

complicated by the stochastic evolution of volatility which implies that the likelihood 

here can not be obtained in closed form. In order to estimate the proposed SV model, 

we present an A-PMCMC (Adaptive Particle Markov China Monte Carlo) algorithm 

to calculate the model parameters and latent variables.  

The motivation why the A-PMCMC algorithm is proposed is that although the 

Bayesian MCMC methods are widely employed to estimate the stochastic volatility 

models with jumps (Jacquier et al., 1994; Eraker et al., 2003; Li et al., 2008; Golightly, 

2009), in real time applications we have to restart the inferential procedure from 

scratch causing a considerable amount of wasted time. The A-PMCMC algorithm 

adaptively samples using information obtained from precious draws to turn the 

proposal distribution automatically, and contains the advantages of the sequential 

Monte Carlo (Particle Filter) method and MCMC algorithm. The particle filter 

algorithm can update the unobserved process given a specific value for the parameters, 

and MCMC moves will be used to update the parameter values. 

In addition, considering that financial data is usually not constant or absolute 

scale and is usually found with multiple time-scale characteristics (Skjeltorp, 2000), 

we use multi-scale analysis for financial data (Guhathakurta et al., 2008; Huang et al., 

2003). Multi-scale analysis is a comprehensive analysis approach and specially 

developed for non-stationary processes. In general, the multi-scale analysis consists of 

two steps: (1) Decompose the original signal according to the time scale and (2) 
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integrate the analysis results of subsystems. Particularly, we adopt empirical mode 

decomposition (EMD) method to decomposition the process, and support vector 

regression (SVR) method for the integration process.  

The EMD method proposed by Huang (1998) can adaptively decompose the 

original signal into a series of intrinsic mode function components with different time-

scale. The method is applicable to nonlinear and non-stationary processes since it is 

based on the local characteristic time scale of the data. Compared to wavelet 

decomposition and Fourier decomposition, EMD decomposition has been reported to 

have worked better in describing the local time scale. The EMD method has been 

applied to analyze the non-stationary financial time series (Huang et al., 2003; 

Premanode et al., 2013; Hong, 2011). Support Vector Regression (SVR), proposed by 

Vapnik (1996), is a non-linear kernel-based regression method which tries to find the 

best regression hyper-plane based on the structural risk minimization principle (Yeh 

et al., 2011). The solution of SVR is unique and globally optimal since SVR is 

formulated to linearly constrain quadratic programming problem. The SVR method 

has been empirically shown to produce a better generalization performance than 

artificial neural networks which is a commonly used machine learning method 

(Rosillo, 2014). The SVR approach has been widely used in volatility forecasting 

(Wang et al., 2013; Tang et al., 2009). For non-stationary financial time series, the 

multi-scale method has been addressed by an increasing number of researches. Most 

of the literature has concentrated on the prediction of crude oil price and stock index 

(Yu et al., 2008; Kazem et al., 2013). To the best of our knowledge, using the multi-

scale method to forecast VaR of financial market has not been studied so far. 

  Integrating the GARCH model with NIG distribution and multi scale analysis, 
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we propose the NIG-GARCH model, which following the steps: Firstly, we 

decompose the financial time series into several intrinsic mode functions by the 

empirical mode decomposition. Secondly, the GARCH model with NIG distribution 

is used to forecast the volatility of the each intrinsic mode function components 

respectively. Finally, the volatility that has been predicted before will be integrated by 

the support vector regression (SVR) method. We call the VaR estimation process as 

NIG-MSA approach.  

 

1.2 Outline of the thesis 

This thesis is organized as the follows. 

In Chapter II, we introduce the model description & mathematical background. 

In Chapter III, we propose an A-PMCMC VaR estimation approach based a new  

stochastic volatility model using adaptive PMCMC method. 

In Chapter IV, we propose a new hybrid VaR estimation approach, named the 

NIG-MSA approach, that integrates the GARCH model with NIG distribution and 

multi scale analysis.  

The conclusion of the thesis is presented in the last chapter.  



 

CHAPTER II 

MODEL DESCRIPTION & MATHEMATICAL 

BACKGROUND 

 

In this chapter, we present the model description and mathematical background  

related with our study contents. First, we introduce the elementary knowledge of 

Value-at-Risk. Second, we briefly present some volatility models including stochastic 

volatility model and GARCH model. Third, we review the background knowledge of 

Bayesian inference and support vector regression. They are the two primary statistical 

learning approaches.  

 

2.1  Value at Risk 

 In finance, the Value-at-Risk (VaR) is a risk measure used to estimate how the 

value of an asset or of a portfolio of assets will decrease over a certain time period 

(usually over one day or 10 days) under usual conditions. VaR has two parameters: (1) 

the significance level   (or confidence level 1 ) at which we plan to make the 

estimate; (2) the risk horizon, denoted h, the length of time over which the assets in 

the portfolio will be held, also called holding period or forecast horizon.   

2.1.1  VaR definition 

 Value-at-Risk (VaR) is a statistical approach to measure financial risk. In 

short, VaR is the maximum loss over a target horizon for a given confidence level. 
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In financial mathematics and financial risk management, VaR is defined as:  given a 

loss level (0,1)  , which corresponds to a 1   level of confidence, the VaR of the 

portfolio at the loss level   is given by the largest number x  such that the 

probability that the return X  is less than x  , is at most  . Mathematically, if  X  is 

the return of a portfolio, then  VaR X  is the level  quantile, i.e. 

     VaR sup : PrX x R X x        (2.1) 

2.1.2  VaR models 

There are three basic types of VaR models: the normal linear VaR model, 

the historical simulation model and the Monte Carlo VaR model. The only differences 

between the three VaR models are due to the manner in which this distribution is 

constructed. All three approaches may be developed and generalized. 

(1)  Normal Linear VaR model. 

Suppose we only seek to measure the VaR of a portfolio without 

attributing the VaR to different risk factors. We also make the simplifying assumption 

that the portfolio’s discounted dayh   returns are . . .i i d  and normally distributed. For 

simplicity of notation we shall, in this section, write the return as X , dropping the 

dependence on both time and risk horizon. Thus we  have 

 2~ . . . ,X i i d   . 

We will derive a formula for x , the   quantile return, . .i e  the return such that 

 Pr X x   . Then the   VaR, expressed as a percentage of the portfolio value, 

is minus this   quantile. Using the standard normal transformation, we have 

https://en.wikipedia.org/wiki/Financial_mathematics
https://en.wikipedia.org/wiki/Financial_risk_management


 

 

11 

 Pr Pr Pr
x xX

X x Z 


 

  

    
       

   
, 

where  ~ 0,1Z N  , So if  Pr X x   , then 

Pr
x

Z  




 
  

 
. 

By definition,   1Pr Z     , so 

 1x 
 




 , 

where   is the standard normal distribution function. 

But = VaRx 
 
by definition, and    1 1 1      

 
by the symmetry 

of the standard normal distribution. Then we can yield an analytic formula for the 

VaR for a portfolio with an . . .i i d  normal return, . .i e  

  1 1VaR       . (2.2) 

If we want to be more precise about the risk horizon of our VaR estimate, we may 

write 

 
 1

, 1h h hVaR         (2.3) 

This is a simple formula for the 100 % h day VaR, as a percentage of the portfolio 

value, when the portfolio’s discounted returns are . . .i i d  normally distributed with 

expectation h  and standard deviation h . 

To obtain the VaR in value terms, we simply multiply the percentage VaR 

by the current value of the portfolio: 

   1

, , 1h t h h tVaR P       , (2.4) 

where tP  is the value of the portfolio at the time t  when the VaR is measured. 
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(2)  Historical VaR model.  

The historical VaR model is a nonparametric method that uses the 

empirical distribution of past returns to generate a VaR. It assumes that all possible 

future variations have been experienced in the past, and that the historically simulated 

distribution is identical to the returns distribution over the forward looking risk 

horizon. Historical Simulation is the procedure for predicting value at risk by 

“simulating” or constructing the cumulative distribution function of asset returns over 

time. It does not require any statistical assumption beyond stationary of the 

distribution of returns or, in particular, their volatility. The limitation of the historical 

simulation lies in its i.i.d. assumption of returns. From empirical evidence, it is known 

that asset returns are clearly not independent as they exhibit certain patterns such as 

volatility clustering. Unfortunately Historical Simulation does not take into account 

such patterns. 

 Historical Simulation is a good re-sampling method because of its 

simplicity and lack of distributional assumption about underlying process of returns. It 

is based on the assumption that history is repeating itself. Unlike other parametric 

methods, the historical simulation makes no specific distribution assumption about 

return distributions. However, the historical simulation implicitly assumes that the 

distribution of past returns is a good and complete representation of expected future 

returns. This method also relies on the specified short historical moving window. 

(3)  Monte Carlo VaR model  

Monte Carlo VaR model uses random samples from known populations of 

simulated data to track a statistic's behavior. With Monte Carlo VaR measures, an 

inference procedure typically characterizes the distribution of returns by assuming 
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some standard joint distribution-such as the joint-normal distribution-and specifying a 

covariance matrix and mean vector. 

The Monte Carlo simulation method is similar to the historical simulation 

method, except that the movements in risk factors are generated from estimated 

distribution. When we need to specify the dependency structure of the risk factors, we 

can determine the marginal distributions as well as their copula. 

The Monte Carlo VaR model requires users to make assumptions about the 

stochastic process. It is subject to model risk. It also creates inherent sampling 

variability because of the randomization. Different random numbers will lead to 

different results. It may take a large number of iterations to converge to a stable VaR 

measure. Unlike other methods, Monte Carlo simulation makes explicit the sampling 

variability in the risk numbers. Although the Monte Carlo Simulation can be time-

consuming according to the properties of problem, the main benefit of running it is 

that it can model instruments with non-linear and path dependent payoff functions, 

especially complex derivatives. 

 

2.2  Volatility model 

In this section, we briefly introduce the two most common volatility models, i.e. 

stochastic volatility model and GARCH model.  

2.2.1  Stochastic volatility model 

We only present the three basic stochastic volatility models related with 

our study.  

(i)  The basic stochastic volatility model 
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h h 


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
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 (2.5) 

where 

  ~ 0,
t

t

N




 
 

 
 and 

1 0

0 1

 
   

  .

 

Here ty  is the observed stock return, th  are unobserved log-volatilities,   

is the drift in the state equation,   is the volatility of volatility factor t  and   is the 

persistence  clustering and heavy tailed distribution of returns (Micciche et al., 2002; 

Taylor, 1986; Liesenfeld and Jung, 2000). 

(ii)  The stochastic volatility model with leverage effects    

The stochastic volatility model with leverage effect can be written as 

 
 

 1

exp / 2 ,

,

t t t

t t t

y h

h h 



    



   
 (2.6) 

where 

  ~ 0,
t

t

N




 
 

 
 and 

1

1





 
   

  .

 

Note that the disturbances are conditionally Gaussian, we can 

write  21t t t      , where  ~ 0,1t N . The state equation can be 

reformulated as    2

1 1t t t th h               
.
 

(iii)  The stochastic volatility model with jumps     

The stochastic volatility model with jumps can be written as 

 
 

 1

exp / 2 ,

,

t t t t t

t t t

y h J

h h 

 

    

 

   
 (2.7) 
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where 

  ~ 0,
t

t

N




 
 

 
 and 

1 0

0 1

 
   

  .

 

Here tJ j  is the time t  jump arrival where 0,1j   is a Bernoulli 

counter with intensity p ,  2~ 0,t JN   dictates the jump size. The leverage effect is 

incorporated as noted earlier. 

2.2.2  GARCH model 

 It is well known that financial time series exhibit time-varying volatility. 

Bollerslev (1986) and Taylor (1986) independently generalised Engle’s model to 

make it more realistic; the generalisation was called “GARCH”. GARCH is probably 

the most commonly used financial time series model and has inspired dozens of more 

sophisticated models. 

The elementary GARCH(p, q) model is defined by, 

 
2 2 2

1 1

,

,

t t t

p q

t i t i j t j

i j

y

y

 

     

 



   
 (2.8) 

where 0  , 0i  , 0j  , and the innovation sequence  
i





 is independent and 

identically distributed with  0 0E    and  2

0 1E   . 

The main idea is that 2

t , the conditional variance of ty  given information 

available up to time 1t  , has an autoregressive structure and is positively correlated 

to its own recent past and to recent values of the squared returns 2y . This captures the 

idea of volatility being “persistent”: large (small) values of 2

ty
 
are likely to be 

followed by large (small) values.  
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In general, GARCH models are the most appropriate models to use when 

one has to evaluate the volatility of the returns of groups of stocks with large amounts 

(thousands) of observations. GARCH models are becoming widely used in 

econometrics and finance because they have randomly varying volatility. The 

GARCH method is one of the techniques based on the assumption that the random 

component of the model shows changes in variability. The GARCH models were 

applied successfully in modeling the volatility of the variable in time series, with the 

applications being taken in large measure from the area of financial investments. 

 

2.3  Bayesian inference 

2.3.1  Fundamental of Bayesian Inference 

Bayesian inference is an important technique in statistics, in which all 

forms of uncertainty are expressed in terms of probability. The Bayesian approach 

regards probability as a measure of the degree of personal belief about the value of an 

unknown parameter. Therefore, it is possible to ascribe probability to any event or 

proposition about which we are uncertain. In frequentist inference, parameters are not 

repeatable random things but are fixed (albeit unknown) quantities, which means that 

they can’t be considered as random variables. In contrast, in Bayesian inference 

anything about which we are uncertain, including the true value of a parameter, can be 

thought of as being a random variable which we can assign a probability distribution, 

known specifically as prior information. A fundamental feature of the Bayesian 

inference is the use of prior information in addition to the sample data. The core 

principle of Bayesian inference is shown in the following Figure: 



 

 

17 

 

Bayesian inference synthesises two sources of information about the 

unknown parameters of interest. The first of these is the sample data, expressed 

formally by the likelihood function. The second is the prior distribution, which 

represents additional information that is available to the investigator. Note that the 

likelihood function is also fundamental to frequentist inference, the prior distribution 

is used only in the Bayesian inference.  

We represent the data by the symbol X  and denote the set of unknown 

parameters by ;  then the likelihood function is  p X  , the probability of 

observing the data X being conditional on the values of the parameter  . In addition, 

we further represent the prior distribution for   as    , giving the probability that 

  takes any particular value based on whatever additional information might be 

available to the investigator. Then, with the application of Bayes’ theorem, we can 

obtain a posterior distribution for  ,  p X 
 
, which expresses what is now known 

about   based on both the sample data and prior information. 

Now we introduce the elementary Bayes’ theorem. Suppose x  and y  are 

random variables, and  ,p x y
 
denotes the joint probability distribution function 

(PDF) of x  and y , then 

          , ,p x y p x y p y p y x p x   (2.9) 
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is called the product rule. Moreover, if assuming y  is a discrete random variable, 

then 

        ,
b b

p x p x y b p x y b p y b      ,(2.10) 

is called the sum rule. Combining the definition of conditional PDF with the product 

and sum rules, we can obtain the Bayes’ rule: 

  
 

 

   

   

,

b

p y x p xp x y
p x y

p y p x d p y b
 

  
, (2.11) 

which is also called Bayes’ theorem. Note that Bayes’ theorem is also true for 

probability distribution functions, not just for probabilities (Bishop, 2006). Moreover, 

following standard Bayesian textbook (Gelman et al., 2003), we use the two words 

distribution and density interchangebly. 

Based on the Bayes theorem, the posterior distribution over parameters 

having a set of observed values of realized random variables X is given by: 

  
   

 
   

p X
p X p X

P X

  
     ,  (2.12) 

The proportionality symbol   expresses the fact that the product of the 

likelihood function and the prior distribution must be scaled to integrate to one over 

the range of plausible   values for it to be a proper probability distribution. 

The posterior distribution for   is a weighted compromise between the 

prior information and the sample data. In particular, if for some value of   the 

likelihood,  p X  , is small, so that the data suggests that this value of   is 

implausible, then the posterior distribution will also give small probability to this   

value. Similarly, if for some value of   the prior distribution,     is small, so that 
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the prior information suggests that this value of   is implausible, then, again, the 

posterior distribution will also give small probability to this   value. Therefore, the 

posterior probability will be high for some   only when both information sources 

support that value. The simple and intuitive nature of Bayes’ theorem as a mechanism 

for synthesising information and updating personal beliefs about unknown parameters 

is an attractive feature of the Bayesian inference. 

2.3.2  MCMC algorithm 

To calculate  p X , in practice, some approximation approach such as 

Markov Chain Monte Carlo is usually needed. Markov Chain Monte Carlo (MCMC) 

methods are a class of algorithms for sampling from a probability distribution based 

on constructing a Markov chain that has the desired distribution as its equilibrium 

distribution. The state of the chain after a number of steps is then used as a sample of 

the desired distribution (Chernozhukov and Hong, 2003). 

Suppose that the specified distribution (the desired stationary distribution 

of the MCMC sampler we are constructing) has an un-normalized distribution  p  . 

MCMC is an iterative procedure, such that given the current state of the chain, i , the 

algorithm makes a probabilistic update to 
    1i i

q 

 . Note that the update,  q  , 

is made in such a way that the distribution    ip p  , the target distribution, as 

i  , for any starting value 
 0

.  We shall review two of the most general 

procedures for MCMC simulation from a target distribution, namely, the Metropolis-

Hastings algorithm and the Gibbs sampler. 

2.3.3  Adaptive MCMC Algorithm 

MCMC algorithms are extremely widely used in statistical inference, to 
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sample from complicated high-dimensional distributions. Tuning of associated 

parameters of the proposal density is crucial to achieve efficient mixing, but can also 

be very difficult to guarantee convergence to the desire distribution. Adaptive MCMC 

algorithms attempt to deal with this problem by automatically “learning” better 

parameter values of MCMC algorithms while they run. We will review the Adaptive 

Metropolis algorithm (Roberts and Rosenthal, 2009) in this section, which is the basic 

adaptive MCMC algorithm. A common adaptive MCMC algorithm is the adaptive 

random walk Metropolis. This method performs a Metropolis algorithm with proposal 

distribution at iteration j  denoted by )|( jq  , which can be written as 

      1 1 1 2 2 2, ,j j d j j d jq k k             , (2.13) 

where d  is the dimension of   and  ,d     is a multivariate d  dimensional 

normal density in   with mean   and covariance matrix  . 1 j
 
is a preset 

parameter which belong the interval  0,1 , 2 11j j   . 1  is a constant covariance 

matrix, which is taken as the identity matrix. The matrix 2 j  is the sample covariance 

matrix of the first j  iterates. The scalar 1k  is meant to achieve a high acceptance rate 

by moving the sampler locally, while the scalar 2k  is considered to be optimal for a 

random walk proposal when the target is a multivariate normal. The acceptance 

probability for the adaptive random walk Metropolis simplifies to 














)(

)(
min)|(

j

j
p

p




 . 

2.3.4  Particle filter algorithm 

The particle filters which are also known as sequential Monte Carlo 
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methods, are simulation based algorithms used to compute the high-dimensional 

and/or complex integrals that arise regularly in applied work. SMC is useful for 

inference on Latent Variable Model (LVM), where LVM will be introduced below. 

These methods are becoming increasingly popular in economics and finance; from 

dynamic stochastic general equilibrium models in macro-economics to option pricing. 

In this section, we will review the basic ideas and algorithm of particle filter. 

We consider the general LVM which consists of two equations: the 

observation or measurement equation and the transition equation. They are 

respectively given by 

 
 

 1

, ,

, .

n n n n

n n n n

y m x

x h x








  (2.14) 

The functions nm
 
and nh

 
are possibly nonlinear but of known form. These densities 

 ;n np y x   and  1;n np x x   corresponding to the above equations respectively are 

called the observation and transition densities. The sequence of state variables are 

generally unobserved and it is the aim of the researcher to estimate them using the 

observed data. Uncertainty about the state variable is formulated as a joint conditional 

probability distribution  0: 1: ;n np x y   known as the joint smoothing distribution. It is 

defined as 

  
 

 
0: 1:

0: 1:

1:

, ;
;

;

n n

n n

n

p x y
p x y

p y





 , 

where the constant of integration  1: ;np y   is the likelihood of the state space model. 

Consider approximating the entire joint distribution  0: 1: ;n np x y   . Given a function 

f  of the state variable, a standard Monte Carlo estimator of the integral 
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      0: 1: 0: 0: 1: 0:;n n n n n nE f x y f x p x y dx     , (2.15) 

consists of drawing sequences 0:nx
 
directly from the target distribution  0: 1: ;n np x y  . 

However, this strategy is generally impossible for complex models because the target 

distribution is non-standard and it is unknown how to draw directly from it. Therefore, 

we use the particle filter to sequentially sample from the posterior probability. 

 

2.4  Support vector regression  

Support Vector Regression (SVR), as a common statistical learning method, has 

been applied in various fields – time series and financial (noisy and risky) prediction, 

approximation of complex engineering analyses, convex quadratic programming and 

choices of loss functions, etc. (Basak, Pal, Patranabis, 2007). The SVR based on the 

computation of a linear regression function in a high dimensional feature space where 

the input data are mapped via a nonlinear function. 

2.4.1  The basic idea  

Statistical Learning Theory has provided a very effective framework for 

classification and regression tasks involving features. Support Vector Regression 

(SVR) is directly derived from this framework and works by solving a constrained 

quadratic problem where the convex objective function for minimization is given by 

the combination of a loss function with a regularization term (the norm of the 

weights). 

Traditional statistical regression procedures are often stated as the 

processes deriving a function ( )f x  that has the least deviation between predicted and 

experimentally observed responses for all training examples. One of the main 
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characteristics of Support Vector Regression (SVR) is that instead of minimizing the 

observed training error, SVR attempts to minimize the generalized error bound so as 

to achieve generalized performance. This generalization error bound is the 

combination of the training error and a regularization term that controls the 

complexity of the hypothesis space. Support Vector Regression (SVR) is the most 

common application form of SVMs. An overview of the basic ideas underlying 

support vector machines (SVM) for regression and function estimation has been given 

in Smola, and Schölkopf, 1998. Support vector regression (SVR) is a powerful 

technique for predictive data analysis. 

 

 

Figure 2.1 The nonlinear mapping from low dimensional feature space to high 

dimensional feature space. 

 

The main idea of SVR is to construct a hyper plane as the decision surface. 

It performs by nonlinearly mapping the input space into a high dimensional feature 

space and then runs the linear regression in the output space. The nonlinear mapping 

process is intuitively shown in Figure 2.1. The Support Vector Regression (SVR) uses 
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the same principles as the SVM for classification, with only a few minor differences. 

First of all, because the output is a real number it becomes very difficult to predict the 

information at hand, which has infinite possibilities. In the case of regression, the 

SVR (Support Vector Regression) algorithm is more complicated therefore to be 

taken in consideration. However, the main idea of SVM and SVR is always the same: 

to minimize error, individualizing the hyperplane which maximizes the margin. 

2.4.2  The estimation method 

Let 1 1{( , ),..., ( , )}L LL x y x y  be a set of training data, where n

ix R
 

denotes the value of input variables, iy R  the corresponding output value for 

1,2,...,i l ,  where l  corresponds to the size of the training dataset, By using non-

linear transformation   from nR  to a high dimensional space F  to structure optimal 

decision function, that is ( ) ( ( )) , : ,nf x w x b R F w F      , where b  denote 

threshold value. 

Using structural risk minimization criterion and introducing slack variables 

*,i i  , w  and b  can be estimated by minimizing the following optimization 

problem: 
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, (2.16) 

where the constants 0C   and 0   are specified parameters in advance. C  is 

referred to as a regularized constant and it determines the trade-off between model 

complexity and training error,   is known as channel width which controls the 
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number of support vectors. By introducing Lagrange multiplier ia  and *

ia  to structure 

Lagrange function, we can obtain the dual representation: 
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, (2.17) 

where iy  is the corresponding output value of training data set. Thus, the SVR 

problem can be converted into a quadratic programming problem, and the parameter 

vector w  can be written in terms of data as follows: 

 *

1

( ) ( )
l

i i i

i

w a a x


  , (2.18) 

the regression function of SVR can be represented in the following equation: 
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


, (2.19) 

where ( , ) ( ) ( )i ik x x x x    known as the kernel function. Common kernel functions 

include the following several kinds: 

Linear kernel function: ( , )i ik x x x x  ; 

Polynomial kernel function: ( , ) ( )d

i ik x x x x  ; 

RBF kernel function: 
2

( , ) exp( ), 0i ik x x x x     ; 

Gaussian RBF kernel function: 
2 2( , ) exp( 2 )i ik x x x x    .  

The kernel functions transform the data into a higher dimensional feature 

space to make it possible to perform the linear separation. Figure 2.2 demonstrates 
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how the kernel function ),( ixxk transform the data into a linear separable higher 

dimensional feature space. Although requiring flatness only in feature space, one can 

observe that the functions also are very flat in input space. This is due to the fact, that 

kernels can be associated with flatness properties via regularization operators.  

 

Figure 2.2 The kernel function transforms process.  

 

In this thesis, the SVR model is used to integrate the volatility process of 

IMF components. However, the true volatility process is usually unobservable, so it is 

difficult to train the SVR. We propose to use the volatility estimation, 22 )( RRt  , 

as a proxy of the true volatility, where R  denote the mean of returns. The proxy 

volatility is able to describe the volatility process of the returns series, but it can not 

predict the volatility.  
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CHAPTER III 

VALUE AT RISK ESTIMATION UNDER STOCHASTIC 

VOLATILITY MODELS USING ADAPTIVE PMCMC 

METHODS 

 

In this chapter, we propose a value-at-risk (VaR) estimation technique based on a 

new stochastic volatility model with leverage effect, non-constant conditional mean 

and jumps. In order to estimate the model parameters and latent state variables, we 

integrate the particle filter and adaptive MCMC algorithms to develop a novel 

adaptive particle MCMC (A-PMCMC) algorithm. Comprehensive simulation 

experiments based on three stock indices and two foreign exchange time series show 

the effectiveness of the A-PMCMC algorithm and the proposed VaR estimation 

technique.  

 

3.1  Stochastic volatility model with leverage effects and jump 

 3.1.1  Model description 

Risk in the sense of the possibility of losses is an inherent ingredient of 

financial markets. To measure and monitor risk as accurately as possible has become 

a competitive factor for financial institutions. Value-at-risk (VaR) (Choudhry, 2013), 

a quantile measure, has become the preferred tool in the financial industry. The 

importance of VaR was further highlighted after it was used by the central banks to 
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govern and supervise the capital adequacy of financial institutions in the Group of 

Ten countries in 1995. The selection of the internal VaR model as well as the 

volatility estimation is essential to the VaR based risk management. 

Volatility which is the most essential parameter in VaR estimation, can be 

considered as the temperature of the market and as such can change rapidly. Risk 

management approaches which do not take these fluctuations into account tend to 

under- or overestimate risk depending on the current market situation. The key idea of 

using stochastic volatility in risk management is to devolatilize the observed return 

series and to forecast future returns (Eberlein et al., 2003). Stochastic volatility 

models have gradually emerged as a useful way of modeling time-varying volatility 

with significant potential for applications, especially in finance (Taylor, 1994; 

Shephard, 1996; Ghysels et al., 1996). In this thesis, we propose a new stochastic 

volatility model with leverage effect, jumps and non-constant conditional mean to 

describe the real world stochastic volatility process. 

The leverage effect has been investigated in a stochastic volatility 

framework (Yu, 2005). This leverage effect describes the relationship between returns 

and conditional variances. It means that bad news in the markets lead to a boost on the 

variance. The underlying reason is that bad news tend to decrease price thus leading 

to an increase in debt-to-equity ratio. Furthermore, the leverage effect is important to 

explain some characteristics of the data on financial derivatives. Conditional mean is 

regarded as the predictable component of the returns and is important in applications 

related to optimal portfolio choices. Economic theory shows that an investor gains 

from market predictability and volatility timing (Merton, 1971). In order to accurately 

describe the stock returns process, we model the conditional expected value of the 
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returns together with the dynamic of the volatilities. 

The conditional mean of returns is modeled via an autoregressive process, 

which can be explained by the non-synchronous trading and unexpected stochastic 

dividend effects (Chernov et al., 2003). In addition, there is substantial evidence in 

favor of jumps on returns and volatilities (Merton, 1976; Eraker et al., 2003; Raggi, 

2005). Jumps can basically be described as rare events; large, infrequent movements 

in returns which are an important feature of financial markets. These have been 

widely documented to be important in characterizing the non-Gaussian tail behaviour 

of conditional distribution of returns. 

The stochastic volatility model with leverage effect, jumps and non-

constant conditional mean is a Gaussian non-linear state-space model, which contains 

unknown parameters and unobserved latent state variables. In this complicated model, 

it is highly non-straightforward to efficiently and simultaneously estimate the model 

parameters and latent state variables. In existing literatures, Bayesian MCMC 

methods are commonly applied for inferences on stochastic volatility models. A 

general stochastic volatility model is as follows: 

 ( ; ; )t t ty G X   , (3.1) 

 1( ; ; )t t tX H X   , (3.2) 

where tX  is the latent state vector,   is the unknown parameter vector, t  and t  

denote the innovation terms. Given the prior information about tX  and  , the goal of 

the Bayesian analysis is to learn about the unknown parameters and latent variables 

from the augmented posterior distribution 

 1
1

( , | ) ( ) ( | , ) ( | , )
T

t t t t
t

y f y X f X X  


       . (3.3) 
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The Bayesian MCMC inference on the parameters and latent variables are 

conducted by producing a sample  ,i iX   from this augmented posterior density. In 

particular, the MCMC algorithm can be used for the stochastic volatility models with 

jumps process (Chib et al., 2002; Eraker et al., 2003; Li et al., 2008; Golightly, 2011). 

The main limitation of MCMC in applications is that every time we observe new data, 

we have to restart the inference procedure from scratch, which is causing a 

considerable amount of wasted time. 

Particle filters, also known as sequential Monte Carlo methods, can reduce 

the computational burden required for estimating latent state variables. The great 

advantage of particle filtering is that in many implementations we simply simulate 

forward in time from our data generating process for the state variables. The typical 

particle filter methods include the Sampling Importance Re-sampling (SIR) particle 

filter (Gordon et al., 1993), the auxiliary particle filter (Pitt and Shephard, 1999), Liu 

and West filter (Liu and West, 2001), Storvik filter (Storvik, 2002) and Particle 

learning (Carvalho et al., 2010). However as mentioned above, particle filters are 

efficient for inference on the unobserved latent processes given known parameter 

values, but struggle when dealing with unknown parameters. 

Recently, an advanced method called “Particle MCMC” (PMCMC) 

(Andrieu et al., 2010) was proposed. PMCMC involves using a particle filter within 

an MCMC algorithm, which takes advantage of the strength of its two components. It 

is most naturally applied to inference on state space models, where there is an 

unobserved stochastic process. The idea of PMCMC is that the particle filter will 

update the unobserved process given specific values for the parameters, and MCMC 

moves will be used to update the parameter values. The PMCMC algorithm has 
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already been applied in some areas (Peters et al., 2000; Rasmussen et al., 2011; 

Golightly and Wilkinson, 2011; Pitt et al., 2012; Wood et al., 2014). There is still 

room to improve the MCMC, however, due to a large Monte Carlo error in the 

particle filter, and due to slow mixing of the MCMC moves. Therefore, we further 

integrate an adaptive MCMC algorithm (Andrieu and Thoms, 2008) to PMCMC in 

order to improve the performance of PMCMC. The adaptive MCMC samplers use 

information obtained from previous draws to tune the proposal distribution 

automatically and repeatedly. The new algorithm is called A-PMCMC. 

To summarize, our contributions are three fold. Firstly, we propose a new 

volatility model including three important features which appear in the real-world 

data. Secondly, we propose an efficient A-PMCMC algorithm which is most naturally 

applied to inference on state space models. It is capable of simultaneously estimating 

parameters and inferencing the latent state variables. Thirdly, we apply the A-

PMCMC algorithm to a VaR estimation technique based on a new stochastic volatility 

model. To prove the efficiency of our method, we apply the proposed VaR technique 

to predict the single-period and multi-period VaR for stock index and exchange rate 

returns. The back-testing results illustrate that the proposed VaR estimation technique 

consistently outperforms the compared methods. 

The remainder of this chapter is organized as follows. The stochastic 

volatility model is described in Section 3.1.2. Section 3.2-3.3 proposes Bayesian 

inference for A-PMCMC and the proposed VaR technique. Section 3.4 conducts a Monte 

Carlo simulation experiment to validate the availability of A-PMCMC method for 

volatility estimation. Section 3.5 illustrates the proposed VaR estimate technique 

using stock indices and exchange rate daily data and demonstrates its effectiveness via 
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Back-testing.  

3.1.2  Model deformation 

In order to capture most characteristics of the financial time series data, we 

extend the standard stochastic volatility model as  

 exp( / 2)t t t t t ty h J    
,
 (3.4) 

 1 ( )t t th h         
,
 (3.5) 

 1 ( )t t t          
,
 (3.6) 

where   

 ~ (0, )
t

t

N




 
 

 
, 

1

1





 
   

 
 (3.7) 

and 

 ~ Bernoulli( )tJ  ,  ~ (0, )t JN  , ~ (0,1)t N .
 

(3.8) 

The novelty of the proposed model is that it expresses three essential 

features of return process, i.e., stochastic volatility, conditional mean and jump. To 

our knowledge, we are the first to propose a model which includes all three features. 

One drawback of our model is that it is quite complicated, so that we have to invent 

an efficient procedure to make a statistical inference, as explained in Section 3.2. In 

this specification, ty
 
is the observed asset log-return at time ,t  i.e. logt ty p   

1log tp  , where tp  is an asset price. The conditional mean t  and the log-volatility th  

are described by two non observable latent processes. In order to properly describe 

extreme events such as crashes in the markets, we allow jumps in the return process. 

tJ  is the time- t  jump arrival where its value  0,1j  is a Bernoulli counter with 
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intensity  . t
 
dictates the jump size. 

t  
is the drift component of the volatility 

process and   can be interpreted as the volatility of the volatility factor t . The 

parameter   is the persistence of the volatility process that allows the volatility 

clustering (Yu, 2005). Typically we would impose that 1  , so that we have a 

stationary process with the initial condition that 

 2 2

0 ~ ( , /(1 ))h N    . (3.9) 

We assume that ( , )t tCov    are correlated with correlation  , which can 

describe the leverage effect. Since the disturbances are conditionally Gaussian, we 

can write 2(1 )t t t      , where ~ (0,1)t N . Therefore, the volatility 

equation (3.5) can then be reformulated as 

 2

1 ( ) (1 )t t t th h                . (3.10) 

In Eq. (3.6), we also directly model the conditional mean of the returns via an 

autoregressive process 1t  .   is the drift component of the mean process and   

can be interpreted as the volatility of the innovation term t . The parameter   is the 

persistence of the regression process and it is assumed that 1  . As for the 

conditional variance, the conditional mean at time 0 is distributed as,  

 
2 2

0 ~ ( , /(1 ))N     . (3.11) 

We emphasize that the serial correlation on the returns induced by 1t   can 

be explained by the non-synchronous trading and unexpected stochastic dividend 

effects (Chernov et al., 2003). We assume that the noise process t  is uncorrelated 

with t  and t . From the above discussion, the stochastic volatility model with jumps 
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and leverage effects can be reformulated the Gaussian nonlinear state space form 

 2

1

1

exp( / 2)

( ) (1 )

( )

t t t t t t

t t t t

t t t

y h J

h h  



  

       

      





  


     


   

 , (3.12) 

where 

 , , ~ (0,1)t t t iid N   , ~ Bernoulli( )tJ  ,  2~ (0, )t JN  . 

In our state space model, the complete specification of the latent state 

includes not just only the unknown th  and t  but also any random variable generated 

in the process of obtaining the th  and t that may have an influence on the 

distribution of ty . We thus have the latent state ( , , , )t t t t tX h J  . In order to 

simplify the inference process of unknown parameters and latent variables, we  make 

the following independent assumptions: (i) tJ  is unconditionally independent with th  

and t ; (ii) t  is unconditionally independent with tJ , th  and t .  

 

3.2  Adaptive particle MCMC algorithm  

In order to simplify the description of the Adaptive Particle MCMC (A-

PMCMC) algorithm, we assign the latent state vector ( , , )t t t tX X J  , where 

( , )t t tX h  , and the parameter vector ( , , , ,J      , , , , )      .        

3.2.1 Inference state variables with known parameters: particle filtering 

In the first step, assuming that   is known, we use a particle filter to 

approximate the latent state variables. From the state space model (3.12), we obtain 

the measurement density ( | ; )t tf y X   and the Markov transition density 
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1( | ; )t tf X X  . As the parameter vector   is considered to be known, the measurement 

density and the transition density are rewritten as ( | )t tf y X  and 1( | )t tf X X   

respectively. The particle filter is an algorithm to propagate and update the Monte 

Carlo samples, usually called “particles”, in order to obtain a new sample which is 

approximately distributed as the posterior density 1:( | )t tf X y , in which 

1: 1 2( , ,..., )t ty y y y  denotes the past history of the observable process. The posterior, 

or filtering, density can be formulated as 

1: 1: 1

1 1 1: 1 1

( | ) ( | ) ( | )

( | ) ( | ) ( | ) .

t t t t t t

t t t t t t t

f X y f y X f X y

f y X f X X f X y dX

   

      



 
 

In order to sample from this filtering density we employ the SIR (Sampling 

Importance Re-sampling) particle filter algorithm (Gordon et al., 1993). The details 

are illustrated in Algorithm 1 below.  

 

Algorithm 1: SIR particle filter algorithm for latent states sampling. 

Draw 1 1~ ( )ih f h  and 1 1~ ( )i f   for 1,..., .i M  

For 1: 1t T   

Step 1: sample 1{ } ~ ( | , , )i M i i

t i t t t tf h y    ; 

Step 2: sample 
1 1 1{ } ~ ( | , )i M i i

t i t t th f h h    
; 

Step 3: sample 1 1 1{ } ~ ( | )i M i

t i t tf      ; 

Step 4: calculate normalized weights,  

1
1 1 1 1 1 1

11

{ } , ( | , )
i

i M i i it
t i t t t tK i

tk

where f y h


  



      



 


. 

Step 5: sample 
1 1 1 1 11

{ } ~ ( )
Mi M k k

t i t t tk
h h h     

  and 
1 1 1 1 11

{ } ~ ( )
Mi M k k

t i t t tk
        

 . 
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Here ( )   is the Dirac-delta function. This will yield an approximation of 

the desired posterior density, 1:( | )t tf X y  as t  varies. In Algorithm 1, the density 

function  ( | , , )t t t tf h y   
in Step 1 is a mixture of the form 

1

0
( | , , ) ( | ; , , ) ( | , , )t t t t t t t t t t t t tj

f h y f J j h y P J j h y     
    . (3.13) 

Using the independence assumption stated at the end of Section 2, the conditional 

probability of a jump is given by 

 
2

2

( | ,exp( ) )
( 1| , , )

( | ,exp( ) ) ( | ,exp( )) (1 )

t t t J
t t t t

t t t J t t t

N y h
P J h y

N y h N y h

  


    

 
 

    
. (3.14) 

Here we denote ( 1| , , )t t t t tp P J h y  . Hence 

 ( 0 | , , ) 1 ( 1| , , ) 1 .t t t t t t t t tP J h y P J h y p        (3.15) 

Now we have 

 

2

2
2

2

2 2

2 2

( | 1, , , ) ( | exp( / 2), ) ( | 0,1)

( exp( / 2))
exp

( ( )exp( / 2) /(exp( ) ))
exp .

/(exp( ) )

t t t t t t t t t J t

t t t t
t

J

t t t t t J

J t J

f J h y N y h N

y h

y h h

h

     

 




  

 

    

  
  

 

   
  

 

 (3.16) 

We hence establish that  

 
2( | 1, , , ) ( , ),

t tt t t t tf J h y N          (3.17) 

where  

 
2

( )exp( / 2)

exp( )t

t t t

t J

y h

h











, 

2
2

2exp( )t

J

t Jh









. 

If the process does not jump, there is a Dirac-delta mass at the point 

( )exp( / 2)t t t ty h    , hence we can establish that 

 ( | 0, , , ) (( )exp( / 2) )t t t t t t t t tf J h y y h          . (3.18) 
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According to (3.13)-(3.18), this mixture is 

 2( | , , ) (( )exp( / 2) ) (1 ) ( | , )
t tt t t t t t t t t t tf h y y h p N p                 . (3.19) 

Moreover, the non-normalized weights for 1 1{ }i M

t i    in step 4 are of the form 

 2( | , ) ( | ,exp( )) (1 ) ( | ,exp( ) )t t t t t t t t t Jf y h N y h N y h            . (3.20) 

3.2.2  Maximum likelihood estimation 

The previous section shows an inference process given that   is known. 

In the next section, we will show how to make an inference with unknown parameters 

 . To do that, one important ingredient is the calculation of likelihood, which shall 

be explained here. The log-likelihood of   is  

 
1 1 1:1

log ( ) log ( ,..., | ) log ( | ; )
T

T t tt
L f y y f y y
     . (3.21) 

In order to estimate this function, via the prediction decomposition (Harvey, 1993), 

we employ the predictive density 

 1 1: 1 1 1 1: 1( | ; ) ( | ; ) ( | ; )t t t t t t tf y y f y X f X y dX        . (3.22) 

In order to estimate the integral, we sample from the transition density 1( | ; )t tf X X  . 

Then we estimate the predictive density as 

 1 1: 1 1 11 1

1 1
( | ; ) ( | ; )

M Mk k

t t t t tk k
f y y f y X

M M
    

     . (3.23) 

The estimation of the log-likelihood log ( )L   is therefore a by-product of 

a single run of the particle filter. Then the estimator for the log-likelihood would 

therefore be 

 1: 11 1 1

1
log ( ) log ( | ; ) log( )

T T M k

t t tt t k
L f y y

M
  

      . (3.24) 
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3.2.3  Inference with unknown parameters: A-PMCMC algorithm 

As mentioned, the particle filter is efficient for inference on the 

unobserved process given known parameter values of  , but struggle when dealing 

with unknown parameters. Therefore, in this work, we invent the improved adaptive 

PMCMC(A-PMCMC) methods to update the parameter values. To simultaneously 

sample both latent states and parameters, we consider the following density 

 1: 1: 1: 1: 1:( , | ) ( | ) ( | )T T T T Tf X y f y f X y   . 

We suggest the following form of proposal density for a Metropolis-Hastings update 

*

* * * *

1: 1: 1: 1:(( , ) | ( , )) ( | ) ( | )T T T Tq X X q f X y


     , 

for which the proposed *

1:TX  is perfectly adapted to the proposed 
* . The resulting 

Metropolis-Hastings acceptance ratio is given by  

*

* * * *
* * 1: 1: 1: 1:

1: 1: * *

1: 1: 1: 1:

* *
1:

*

1:

( , | ) (( , ) | ( , ))
( , ; , )

( , | ) (( , ) | ( , ))

( ) ( ) ( | )
.

( ) ( ) ( | )

T T T T
T T

T T T T

T

T

f X y q X X
X X

f X y q X X

f y p q

f y p q







  
   

  

  
 

  

   (3.25) 

The expression for this ratio suggests that the algorithm effectively targets the 

marginal density 1: 1:( | ) ( ) ( )T Tf y f y f    (Andrieu and Roberts, 2009), where we 

can use the likelihood formula explained in the previous section. In order to improve 

the performance of MCMC algorithm, we further employ the adaptive Metropolis-

Hastings sampling for *( | )q   (Roberts and Rosenthal, 2009). It is defined as 

 * * *

1 1 1 1 1 2 1 2 2( | ) ( | , ) ( | , )i d i d iq N N               , (3.26) 

where i  is the iterations, d  is the dimension of   and *

1( | , )iN     is a 

multivariate d  dimensional normal density in 
*  with mean 1i  and covariance 
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matrix  ; 1 2 1, ,    and 
2  are the system setting parameters. By the symmetric 

property of Eq. (3.26), we note that the acceptance probability for the adaptive 

Metropolis-Hastings simplifies to 

 
*

*

1:* *

1: 1:

1:

( ) ( )
( , ; , ) min 1 ,

( ) ( )

T

T T

T

f y p
X X

f y p
 



  
    

  

.   (3.27) 

To summarize, the A-PMCMC method is described in Algorithm 2: 

 

Algorithm 2: Adaptive PMCMC methods for parameter values estimation 

Step 1: set the prior distribution for the parameter vector   and to initial value 0 ; 

 For 1:n N  

Step 2: sample * *

1~ ( | )iq    ; 

Step 3: run an SIR particle filter algorithm targeting * 1: 1:( | )T Tf X y


, sample  

*

*

1: 1: 1:~ ( | )T T TX f X y  and * 1:( )Tf y


. 

Step 4: with probability 

              
*

*

1:* *

1: 1:

1:

( ) ( )
( , ; , ) min 1 ,

( ) ( )

T

T T

T

f y p
X X

f y p
 



  
    

  

                                    (3.28) 

              set *

i   , *

1: 1:

i

T TX X  and )(
~

)(
~

:1:1 * TT yfyf
i   ; otherwise  

              set 1i i  , 1

1: 1:

i i

T TX X   and 
11: 1:( ) ( )

i iT Tf y f y
  . 

 

Note that under mild assumptions the acceptance probability (3.28) 

converges to equation (3.27) as N  (Andrieu et al., 2010). Note also that, in Step 

3, running an SIR particle filter algorithm, we can only obtain * 1:( | )t tf X y


. By means 

of * * * *1: 1 1: 1 1: 1( | ) ( | ) ( | ) ( | )t t t t t t t tf X y f y X f X X f X y     
 , we can get * 1: 1:( | )T Tf X y


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iteratively. 

 

3.3  Dynamic Value at Risk 

3.3.1  Dynamic Value at Risk definition 

 Value-at-Risk estimates often move through time. To make the Value-at-

Risk estimation more precise, we need to use dynamic strategies to measure the 

Value-at-Risk. The dynamic strategy can be most appropriately illustrated by 

applying it to a real situation in portfolio management. The market conditions are 

changing every day. That is why we must adapt the Value-at-Risk estimation to the 

daily, weekly or monthly fluctuations. The problem of dynamic Value-at-Risk deals 

with the questions, how one can define the general trading rules and build a single 

adaptation scheme for risk estimations. Generally speaking, the problems of a 

dynamic Value-at-Risk measurement are difficult to solve, but very interesting and 

still actual in modern risk research. (Rogachev Andrey, 2002.) 

 3.3.2  Dynamic Value at Risk estimation 

  Value at risk (VaR) is one of the most often used risk measurement in 

finance. It measures the possible loss level over a given horizon at a given confidence 

level 1  . Mathematically VaR at   probability level is defined as: 

 
1

, ( )t tVaR F  , (3.28) 

where 1

tF   is the inverse function of the conditional cumulative distribution function 

( | )t tF y X , and as shown in previous sections, the corresponding probability density 

function ( | )t tf y X  is 
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 

 

1
2 2 2 12

1
2

2

1
( | ) 2 (exp( ) ) exp ( ) (exp( ) )

2

1
(1 ) 2 exp( ) exp ( ) exp( ) .

2

t t t t J t t t J

t t t t t

f y X p h y u h

p h y u h

  










 
     

 

 
     

 

      (3.29) 

Based on the A-PMCMC algorithm, we can describe the dynamic VaR estimation 

technique as follows: 

 

Algorithm 3: A-PMCMC Value at Risk estimation  

Step 1: conduct the algorithm 1 and algorithm 2 to on line estimate the latent state tX  

and parameters  ; 

Step 2: calculate the conditional probability of a jump for predict 1tJ   by Eq. (3.14) 

and predict the 
1th 
 and 1t   by Eq. (3.5) and Eq. (3.6) respectively; 

Step 3: compute 1 1( | )t tF y X    by Eq. (3.29); 

Step 4: estimate 
1

, 1 1( )t tVaR F 

  . 

 

3.4 Simulation experiment 

To understand the capabilities of both PMCMC and the improved A-PMCMC 

methods, we illustrate their performance on learning parameters from synthetic data. 

The synthetic data were simulated from the model with the following the parameters 

Volatility process: 0.08, 0.975, 0.2, 0.3        ; 

Conditional mean: 0.001, 0.95, 0.1     ; 

 Jump process: 0.01, 2J   . 
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Figure 3.1  Synthetic log-returns and synthetic conditional volatilities. 

 

These parameter values are consistent with empirical findings on similar jump 

diffusion models (Chib et al., 2002).  

In the simulation procedure, we set observations numbers 1000T  , particles 

numbers 5000,   MCMC iterations 3000,N   initial iterations 0 1000.i   Following 

Roberts and Rosenthal (2001), we set 1 1   for 0i i , with 0i  representing the initial 

iterations, 1 0.05   for 0i i  with 2 11   ; 1 0.01/ ,d  2 5.6644/ d  ; 1  is an 

identity covariance matrix and 
2  is the sample covariance matrix of the first 1i   

iterates. Moreover, in accordance with Eraker et al. (2003), we hypothesize the prior 

distribution for the parameter vector   as follows: 
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Volatility process: ~ (0,10)N , ~ (25,2)Beta , 2 ~ (2.5,0.1)IG , ~ ( 1,1)U  ; 

Conditional mean: ~ (0,4)N , ~ (25,2)Beta , 2 ~ (2.5,0.1)IG ; 

Jump process: ~ (2,40)Beta , 2 ~ (2.5,0.05)J IG . 

Figure 3.2 shows the parameter density estimations of the A-PMCMC and 

PMCMC algorithms. The corresponding plot in Figure 3.2 suggests that estimated 

parameters converge towards the given parameters. Figure 3.3 describes the synthetic 

conditional volatilities, estimated volatility by A-PMCMC method and PMCMC 

method respectively, which shows that the A-PMCMC method outperforms the 

PMCMC method by better tracking the synthetic volatilities. 

 

 

 

 

 

 



          

          

          
Figure 3.2  Estimated density of unknown parameters of stochastic volatility model. The blue line is the true value; the black line and the   

 red line denote the posterior densities estimated by A-PMCMC and PMCMC, respectively. 
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Figure 3.3  Estimated volatilities of A-PMCMC method (blue line) and PMCMC 

method (red line) and the synthetic conditional volatilities (gray line). 

 

The parameter estimation results of A-PMCMC method and PMCMC method are 

described in Table 3.1, which contains the means, standard deviations and estimated 

quantiles at 5%, 50%, 95% respectively. In order to increase the robustness of the 

parameter estimation, the A-PMCMC method and PMCMC method are run 50 times 

using different random seeds but keeping the prior parameter values fixed. The 

estimated parameters are the average of 50 times individual running results. In testing 

for bias we find very encouraging results. We point out that all the parameters estimated 

by both A-PMCMC method and PMCMC method are within the boundary of their 90% 

confidence limits. Moreover, we find that the parameter values estimated by A-

PMCMC method are closer to the true value compared to the estimated parameters of 

the PMCMC method. 
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Table 3.1  Posterior means, standard deviations and quantiles for parameters. 

   A-PMCMC Method  PMCMC Method 

 True  Posterior  Posterior 

 Value  Mean SD 5% 50% 95%  Mean SD 5% 50% 95% 

 0.08  0.069 0.242 -0.460 0.060 0.639  0.019 0.386 -0.595 0.0102 0.649 

 0.975  0.970 0.017 0.932 0.962 0.982  0.961 0.015 0.932 0.964 0.983 

 0.2  0.210 0.036 0.154 0.207 0.275  0.218 0.044 0.149 0.216 0.295 

 0.001  0.035 0.132 -0.179 0.037 0.253  0.046 0.088 -0.087 0.044 0.200 

 0.95  0.899 0.079 0.731 0.925 0.975  0.887 0.120 0.671 0.897 1.069 

 
0.1  0.158 0.066 0.076 0.142 0.293  0.167 0.070 0.0733 0.155 0.305 

 -0.3  -0.234 0.121 -0.437 -0.235 -0.035  -0.195 0.094 -0.348 -0.197 -0.043 

 0.01  0.011 0.002 0.007 0.010 0.150  0.011 0.003 0.006 0.011 0.016 

 2  2.037 0.109 1.856 2.037 2.215  2.050 0.084 1.83 2.045 2.188 

 

3.5  Application to financial risk 

In this section, the above described methodology is applied to real world 

applications in order to estimate the VaRs of three major stock indices and two currency 

exchange rates. To test the performance of our method, we estimate the 1-period VaR 

and 10-period VaR using daily data of stock indices and currency exchange rates, 

respectively. The two common significance levels 0.01   and 0.05   are chosen. In 

order to validate the VaR calculation, the back testing procedures are employed.  Let 

N  denote the number of exceptions at time , 1,2,...,t t T . It should be the case that 

the proportion of exceptions /N T  approximately agrees with the fixed probability 

















J
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level  . Hence, the hypothesis test is given by: 

0 1: [ ] , : [ ] .H E N T H E N T    

Alexander (2009) proposed to employ the following likelihood ratio statistic, 

2log[(1 ) ] 2log[(1 / ) ( / ) ]T N N T N NLR N T N T       , 

to test this hypothesis. Under the null hypothesis 
0H , The statistic LR  follows an 

asymptotically 2 (1)  distribution. The comparison is based on the asymptotically valid 

p  value for the likelihood ratio statistic, and methods with higher p  value are 

preferred. 

3.5.1  Application to estimate 1-period VaR of stock market 

The S&P 500, Nikkei 255 and Shanghai composite are three major stock 

market indices. Our methodology is applied to estimate the 1-day VaR on these stock 

indices from July 21, 2005, to December 31, 2014，containing 2115 daily 

observations. In the sample period, two major events occurred in the global financial 

market: the US subprime crisis and the Eurozone sovereign debt crisis, which caused 

sharp fluctuations in the global stock markets. Figure 3.4 shows the stock price indices 

and their log-returns. It is evident that the US stock market, Japanese stock market and 

Chinese stock market underwent the largest market volatility in September 2008, when 

Lehman Brothers collapsed. During 2007-2010, the volatility of stock markets 

fluctuated widely. Additionally, it shows that the three stock markets experienced a 

large volatility in September 2011. On September 30, 2011, investors’ panic mood for 

the Euro-zone sovereign debt crisis had reached the peak, which resulted in a sharp 

fluctuation in the stock market.  

 



         

         

 

 

 

 

 

 

 

Figure 3.4  S&P 500, Nikkei 255 and Shanghai composite indices and their log-returns from 2005/07/21 to 2014/12/30. 
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In this section, we compare our A-PMCMC method with the PMCMC 

method. We also compare them with the GARCH (1, 1) method, which is current state-

of-the-art used by most practitioners. Figure 3.5 shows VaR estimation results at 

probability levels 0.05   and 0.01   in which all three methods seem to do very 

good jobs on tracking the extreme VaR to the real loss. However, note that GARCH (1, 

1) tends to overestimate the extreme fluctuations. 

In the VaR back-testing, we observe the fact that GARCH (1, 1) and 

PMCMC fail to provide acceptable results for some stock markets. Table 3.2 presents 

the back-testing results, which indicates that at significance levels 0.05   and 

0.01  , the A-PMCMC method gives accurate estimations at each probability level. 

Nevertheless, the PMCMC method fails to provide acceptable results at 95% 

confidence level for the Japanese and Chinese stock markets at 0.05   risk level and 

for the Chinese stock market at 0.01   risk level. Particularly, at 0.05   risk level, 

the GARCH (1, 1) method fails to provide acceptable results at 95% confidence level 

for the Japanese and Chinese stock markets, and at 0.01   risk level, it fails to provide 

acceptable results for all three stock markets. Therefore, the proposed A-PMCMC 

method is the only one which is able to provide reliable VaR estimation in real-world 

stock markets. 

 

 



           

Panel A: 05.0  

 

 

 

 

 

 

 

Panel B: 01.0  

 

Figure 3.5  The 1-day VaR estimations of S&P 500, Nikkei 255 and Shanghai composition indices at 05.0  and 01.0 . The 

dots are the actual log-returns; the blue line denotes the A-PMCMC method, the red line denotes the PMCMC method 

and the yellow line denotes the GARCH (1, 1) method. 5
0
 



Table 3.2  Back-testing results for the 1-day VaR estimations. 

 

 A-PMCMC Method  PMCMC Method  GARCH(1, 1) Method 

 N N/T LR p-value  N N/T LR p-value  N N/T LR p-value 

05.0                

S&P 500 105 0.0497 0.0049 0.9443  96 0.0454 0.9655 0.3258  89 0.04210 2.9280 0.0871 

Nikkei 255 99 0.0468 0.4562 0.4993  82 0.0388 6.0413 0.0139  80 0.0378 7.1549 0.007 

Shanghai composition 107 0.0506 0.0167 0.8969  85 0.0402 4.5605 0.0327  83 0.0393 5.5227 0.0187 

01.0                

S&P 500 24 0.0113 0.3744 0.5405  18 0.0085 0.4960 0.4812  12 0.0057 4.7296 0.0296 

Nikkei 255 19 0.0089 0.2265 0.6341  15 0.0071 2.0044 0.1568  11 0.0052 5.9570 0.0147 

Shanghai composition 27 0.0127 1.5085 0.2193  31 0.0146 4.0613 0.0438  12 0.0057 4.7296 0.00296 

 

5
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3.5.2 Application to estimate 10-period VaR of exchange rate market 

In this section we perform a predictive performance for 10-day VaR 

estimation. For the multi-period VaR estimation, the common method is the “static” 

estimation method. We first introduce the static method of 10-day VaR. Under the 

assumption that the daily returns are independent identically distributed (i.i.d) and 

normal, the h day VaR can be calculated by the square-root scaling rule, that is  

, 1,hVaR h VaR   .                                           (3.30) 

Although the assumption that the return series are i.i.d. and normal is usually 

not justified in practice, the static method is widely applied by practitioners so it is used 

as a benchmark. It provides a sort of “plain vanilla” estimation for h day VaR. 

Comparing with the “static” estimation method, the proposed A-PMCMC method and 

PMCMC methods can be regarded as “dynamic” estimation method that can predict all 

volatilities in the next h  days directly. We will use the Japanese-Yen / US Dollar and 

Chinese-RMB / US Dollar time series to compare the three estimation methods. 
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Figure 3.6  Japanese-Yen/US-Dollar and Chinese-RMB/US-Dollar exchange rates, 1-

day log-returns from 2005/07/21 to 2014/12/30 and 10-day log-return from 

2005/07/31 to 2014/12/30. 

 

The Japanese-Yen / US Dollar and Chinese-RMB / US Dollar are two major 

currency exchange rates. The sample set contains 2372 daily observations period from 

July 21, 2005, to December 31, 2014. Figure 3.6 shows the Yen / Dollar and RMB / 
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Dollar exchange rates and their 1-day and 10-day log-returns, respectively. It is obvious 

that the two exchange rates underwent the largest market volatility during the US 

subprime crisis and the Eurozone sovereign debt crisis. Moreover, the fluctuations of 

10-day log-returns are greater than 1-day log-returns. Therefore, from a methodological 

perspective, the 10-day VaR estimation is much harder than the 1-day VaR estimation.  

 

 

Panel A: 05.0  

 

 

Panel B: 01.0  

 

Figure 3.7  The 10-day VaR estimations of Yen/Dollar and RMB/Dollar exchange rates 

at 05.0  and 01.0 . The dots are the 10-day log-returns, the  blue line 

denotes the A-PMCMC VaR method, the red line denotes the PMCMC 

VaR method, and the yellow line denotes the Static VaR Method. 
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Figure 3.7 presents the 10-day VaR estimation results for Yen / Dollar and RBM / 

Dollar at 0.05   and 0.01   risk levels. The VaR estimations are different among 

the “dynamic” A-PMCMC and PMCMC method and the “static” method. It is obvious 

that as the probability level decreases from 0.05   to some extreme values such as 

0.01  , the gaps of these three methods get larger and larger.  Table 3.3 summarizes 

the results of the back-testing for the Yen / Dollar and RMB / Dollar exchange rates. 

On average, the A-PMCMC method gives the most accurate forecasts at each 

probability level compared to the PMCMC method and the “static” method. The test of 

VaR is not rejected for the A-PMCMC method at all risk levels. In contrast, the 

PMCMC method fails to provide acceptable results for the Chinese stock market at 

0.05   and 0.01   risk levels. Similarly, the “static” estimation method also fails to 

provide acceptable results for RMB / Dollar exchange rate at the 0.05   level and for 

the two exchange rates at extreme the 0.01   level. The comparative result indicates 

that in multi-period VaR estimation, the “dynamic” A-PMCMC and PMCMC methods 

have a better performance than “static” estimation method. Further, in the “dynamic” 

estimation methods, our A-PMCMC method is superior to the PMCMC method. 

 



Table 3.3  Back-testing results for the 10-day VaR estimations. 

 

 A-PMCMC Method  PMCMC Method  Static Method 

 N N/T LR p-value  N N/T LR p-value  N N/T LR p-value 

05.0                

Yen 122 0.0516 0.1341 0.7141  113 0.0478 0.2350 0.6278  94 0.0397 5.5493 0.0184 

RMB 145 0.0614 6.0323 0.0140  154 0.0652 10.5271 0.0011  168 0.07112 19.7352 0.0000 

01.0                

Yen 32 0.0135 2.7032 0.1001  20 0.0084 0.5911 0.4419  12 0.0051 7.0452 0.0079 

RMB 22 0.0093 0.1148 0.7346  36 0.0152 5.6482 0.0171  48 0.0203 19.5693 0.0000 
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CHAPTER IV 

DYNAMIC RISK MEASUREMENT OF FINANCIAL 

TIME SERIES WITH HEAVY-TAILED: A NEW HYBRID 

APPROACH 

 

In this chapter, a new hybrid approach to measure dynamic risk of financial time 

series with heavy-tailed distribution is presented. The proposed method, hereafter 

referred to as NIG-MSA, exploits the normal inverse Gaussian (NIG) distribution to 

fit the heavy-tailed distribution, and combines the empirical mode decomposition with 

support vector regression to structure a multi-scale analysis (MSA) methodology. The 

validity of the NIG-MSA method for volatility prediction is confirmed through Monte 

Carlo simulation. This method is illustrated with an application to the risk 

measurement of returns on the S&P 500 index, and our results show that the proposed 

NIG-MSA approach provides more precise Value at Risk calculation than the 

traditional single-scale model.  

 

4.1  The dynamic risk measurement model 

4.1.1  The GARCH (1, 1) model with NIG distribution  

The GARCH (1, 1) model is a parsimonious model in volatility forecasting 

models (Eberlein, 2003). The model provides a simple representation of the main 

statistical characteristics of a return process, such as autocorrelation and volatility 
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clustering. The GARCH (1, 1) model is the most popular structure for volatility 

forecasting and, consequently, it is extensively used to model real financial time 

series. 

Let 1log logt t tR P P 
 denote the logarithm of return, where 

tP  is the 

asset price at time t . The return process is modeled in the GARCH (1, 1): 

2 2 2

1 1

t t t

t t t

R

R

 

    



  
 ,                                        (4.1) 

where the innovation term t  is assumed to be an independently and identically 

distributed random variable. The volatility 2

t  is time varying and unobservable in the 

market. To ensure that the conditional variance is positive, we assume that the 

parameters ,   and   all satisfy 0, , 0    . 

The NIG distribution is a heavy-tailed distribution which is rich enough to 

model financial time series and has the benefit of numerical tractability (Eberlein et 

al., 1995; Nielsen, 1997). The density function of the NIG distribution for x  is  

2 2

2 2

2 2

{ ( ) }
( ; , , , ) exp{ ( )}

( )
NIG

K x
f x x

x

  
        

  

 
    

 
,       (4.2) 

where, 0   and   , 1

0

1
( ) exp{ ( )}

2 2

x
K x y y dy


   . 

The location and scale of the density are mainly controlled by paramters   

and   respectively, whereas   and   play roles in the skewness and kurtosis of the 

distribution. Thus all moments of ( , , , )NIG      have simple explicit expressions, in 

particular, the mean and variance are 2 2( )E x        and 

2 2 2 3( ) ( )Var x      . Furthermore, if 0  , the NIG distribution has the tail-
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behavior 

( , , , , 0)NIGf x      ~
3

( )2 xx e as x 


   ,                  (4.3) 

which shows that the NIG distribution has an exponential decaying speed. As 

compared to the normal distribution, the NIG distribution decays more slowly and the 

NIG distribution often appears in modeling the return process. In this paper, we 

propose that the stochastic term t  is assumed to possess the NIG distribution. The 

parameters in GARCH (1, 1) model are estimated using quasi-maximum likelihood 

method. 

4.1.2  Empirical Mode Decomposition (EMD) 

The decomposition is based on the local characteristic time scale of the 

data. So any non-stationary dataset can be adaptively decomposed into a finite and 

often small number of Intrinsic Mode Functions (IMF) with individual intrinsic time 

scale properties. The IMFs satisfy the following two prerequisites: (1) In the whole 

data series, the number of extreme points and the number of zero crossings must be 

equal or differ at most by one. (2) The mean value of the envelopes defined by local 

maxima and minima must be zero at all points. Each IMF component has a clear 

physical meaning and contains a certain characteristic range of time scale (Huang et 

al., 1998). As compared with the original data, the IMF components are more 

stationary, which is advantageous to forecast volatility of return process. The generic 

EMD algorithm is described by the following steps: 

(i)  Identify all the maximum points and all the minimum points of original  

signal ( )x t .  

(ii)  Fit the maxima envelop ( )ux t  and minima envelope ( )lx t  with cubic 
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spline function.  

(iii)  Calculate the mean value 
1( ) ( ( ) ( )) 2l um t x t x t  .  

(iv)  Calculate the quasi-IMF 1 1( ) ( ) ( )h t x t m t   and test whether 
1( )h t  

satisfies the two prerequisites of an IMF property. If they are satisfied, we obtain the 

first IMF. If not, we regard 
1( )h t  as ( )x t  and repeat steps (i)-(iii) until 

1( )h t  becomes 

an IMF. 

(v) Calculate the first residual term 1( ) ( ) ( ).res t x t h t   The ( )res t  is 

treated as new input ( )x t  in the next loop to derive the next IMF. We stop the 

decomposition procedure until the residual term ( )res t  becomes a monotonic function 

from which no further IMF can be extracted. 

From the above decomposition process, it is obvious that the original time 

series ( )x t  can be reconstructed by summing up all the IMF components together 

with the last residue component, that is ( ) ( ) ( ).ix t h t res t   In this thesis, the 

residual term is seen as the last IMF. 

The EMD method adaptively obtains the local IMF components with the 

shortest cycle by screening the local characteristics from the original signal and each 

component also includes a corresponding section of different frequency component. 

4.1.3  The hybrid dynamic risk model 

In this thesis, the overall process of formulating the dynamic risk 

measurement model is presented. Here we name this new VaR method as the Normal 

Inverse Gaussian- Multi-Scale Analysis (NIG-MSA) method. The NIG-MSA model 

ensemble paradigm can be formulated as illustrated in Figure 4.1.  
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Figure 4.1  The overall process of the NIG-MSA model. 

 

As can be seen from Figure 4.1, the NIG-MSA model generally consists of 

the following four main steps: 

(1) The returns series ( ),R t  1,2, ,t T  is adaptively decomposed into a 

finite number of IMF (Intrinsic Mode Function) components employing the EMD 

method. 

(2) The GARCH (1, 1) model is used as a prediction tool to model the 

volatility process of each extracted IMF component and to predict the corresponding 

volatility, in which we assume the innovation term is NIG distribution. 

(3) The volatility forecasting results of all extracted IMF components in 

step (2) are integrated to generate an aggregated volatility estimation using a SVR 

model. 

GARCH1 GARCH2 ……… GARCHn GARCHn+1 

Volatility1 ……… Volatility2 

 

Volatilityn 

 

Volatilityn+1 

 
SVR 

 Aggregated Volatility 

IMF1 IMF2 ……… IMFn Rest 

EMD 

Daynamic VaR 
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(4) Using the aggregated volatility to calculate the devolatilized return, 

then the NIG distribution parameters can be estimated. 

 

4.2  Simulation experiment 

4.2.1  Experimental design 

The NIG-MSA technique consists of two main parts: predict the volatility 

using the multi-scale methodology and dynamically estimate the quantile of 

innovation. The calculation procedure can be described as: 

(i)  Set up the data generating model and select the kernel functions in  

SVR model. 

(ii)  Estimate the aggregated volatility ˆ t  using the multi-scale 

methodology. 

(iii) Calculate the innovation terms  ˆ/t t tR   and fit the NIG distribution 

parameters and estimate the quantile q̂ . 

(v)  Calculate the ˆ ˆ
t tVaR q  . 

From the above calculation steps, we can see that the key pillar for the 

NIG-MSA technique is the accurate estimation of  the volatility. In the simulation, we 

only focus on the volatility forecasting. The Monte Carlo simulation is applied to 

evaluate the performance of the NIG-MSA method. The simulated data set is 

generated by the following model 
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2 2 2

1 1

2 2

1 1

0.1 0.4 0.5 1 400

0.5 0.1 0.8 400 750

0.1 0.7 0.2 750 1000

t t t

t t

t t t

t t

R

R t

R t

R t

 



 



 

 

 



    


    


   

,                   (4.4) 
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where tR  is return and 
t  is innovation distributed as normal inverse Gaussian with 

zero mean and unit variance. Notice that if the data generating process is t t tR    

then t tVaR q
 
(Franke et al., 2004). 

4.2.2  Experimental result analysis 

The purpose of this experiment is to evaluate the four volatility forecast 

methods: (i) GARCH (1, 1) with normal distribution (Nor-GAR), (ii) GARCH (1,1) 

with normal inverse Gaussian distribution (NIG-GAR), (iii) Multi-scale analysis with 

normal distribution (Nor-MSA) and (iv) Multi-scale analysis with normal inverse 

Gaussian distribution (NIG-MSA). We use the four models to respectively forecast 

the real volatility generated in (3) and the simulation results are shown in Figure 4.2.  
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Figure 4.2  The comparison of volatility forecasting. 

 

The volatility forecasting performance is evaluated using the following 

statistical metrics: 

Normalized mean squared error (NMSE): 

2 2 2 2 2 2

1

1 1

ˆ( ) ( )
N N

t t t t

t t

NMSE R R R 

 

   
                            

                   (4.5) 

Normalized mean absolute error (NMAE): 

2 2 2 2

1
ˆ

N

t t t t

t

NMAE R R R                                                              (4.6) 

Hit rate (HR) 
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2 2 2 2

1 1
ˆ1 , ( )( ) 01

,
0 , .

N
t t t t

t t

t

R R R
HR

N else

  
   

    


                     (4.7) 

The three statistical metrics relate the predicted volatility 2ˆ
t  to the proxy 

volatility estimation 2

1tR  . The NMSE and NMAE are the measures of the deviation 

between the proxy and predicted values. The smaller their values, the closer the 

predicted volatility is to the actual values. The HR is a measure of how often the 

model gives the correct direction of change of volatility. The larger the value of HR, 

the better is the performance of prediction. 

Additionally, the volatility of the return process can not be observed, so we 

evaluate the performance of the volatility prediction in the model following the 

criterion: the better the forecasting performance of volatility model, the better the 

standardized observation ( ˆ ˆ/t t tR  ) is fitting the normal inverse Gaussian 

distribution. The Kolmogorov– Smirnov distance (KS) is usually used to test whether 

a given ( )F x  is the underlying probability distribution of ( )nF x , so we use the 

Kolmogorov-Smirnov distance as the criterion for the goodness of fit testing. It is 

defined as 

sup ( ) ( )x R nKS F x F x 
,                                         (4.8) 

where ( )F x  is the empirical sample distribution and ( )nF x  is the cumulative 

distribution function. The smaller the values of KS distances, the closer are the 

predicted volatility to the actual values.  

Table 4.1 gives the descriptive statistics of the simulation results and 

shows the superiority of the NIG-MSA model over the other models. The table reports 

the computed KS distance, NMSE, NASE and HR statistics metrics for the four 
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models: Nor-GAR, Nor-MSA, NIG-GARCH, NIG-MSA. It shows that the values of 

KS distance, NMSE, NMAE for the NIG-MSA model are below the others, and that 

the value of HR for NIG-MSA model is the highest. Further, it indicates that multi-

scale analysis has more influence on the volatility forecasting performance compared 

with the NIG distribution assumption. For an example of KS distance, the value of 

Nor-MSA reduced to 0.0174 and NIG-GAR only down to 0.0402 relative to the value 

of Nor-GAR 0.0581. As for the other three statistical metrics, we can draw the same 

conclusion. The NIG-MSA model can give better predictions because of its good 

time-frequency property which can describe non-stationary financial time series.  

 

Table 4.1  Results of the simulation. 

Methods Nor-GAR Nor-MSA NIG-GAR NIG-MSA 

KS distance 0.0581 0.0174 0.0402 0.0165 

NMSE 0.8015 0.7954 0.7028 0.6905 

NASE 0.8943 0.8873 0.6674 0.6367 

HR 0.65 0.694 0.671 0.76 

 

4.3  Empirical analysis 

 The data set S&P500 index was used in our empirical analysis. The index is 

daily registered from 2000/01/03 to 2014/10/28. There are 3729 observations. The 

first 2768 observations (from 2000/01/03 to 2010/12/31) are used as a basis to train 

the multi-scale analysis system and estimate the NIG distribution parameters. The 

residual 961 observations are used as a test set to evaluate the prediction of the 
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dynamic VaR calculated by the NIG-MSA dynamic risk measurement model. The 

graphics of the return processes of train set are displayed in Figure 4.3.  

 

 

Figure 4.3  The logarithmic return process of S&P 500 index. 

 

4.3.1  NIG-MSA model training and volatility prediction 

The NIG-MSA model can be trained according to the multi-scale 

methodology shown in 4.1. Firstly, the training set (2768 observations) is decomposed 

into ten IMF components (the last IMF is residual term) using the EMD technique, as 

illustrated in Figure 4.4. Then, the GARCH (1, 1) model was used to model the every 

IMF component and to estimate corresponding volatility. The estimation results of the 

parameters is shown in Table 4.2. Finally, we select the Gaussian RBF kernel function 

to train the SVR model and the aggregated volatility as given in Figure 4.5.  
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Figure 4.4  The decomposition of the training set. 
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Table 4.2  Parameter estimation results of the GARCH (1, 1) for IMF components. 
 

  Estimate Std. Error t-statistic Prob.(>|t|) 

IMF1 
  

  

    

0.000003 

0.499008 

0.499992 

4.9912e-07 

0.028298 

0.022552 

6.01063 

17.63383 

22.17095 

0.00000 

0.00000 

0.00000 

IMF2 
  

  

     

0.000001 

0.485806 

0.513194 

1.3844e-07 

0.085176 

0.018489 

7.223301 

19.296566 

27.756293 

0.00000 

0.00000 

0.00000 

IMF3 
  

  

    

0.000001 

0.665307 

0.333693 

2.8603e-07 

0.030181 

0.010341 

3.496137 

22.04393 

32.26893 

0.00000 

0.00000 

0.00000 

IMF4 
  

  

    

0.000003 

0.915177 

0.083811 

4.7507e-07 

0.153852 

0.004509 

6.314859 

5.948424 

18.58749 

0.00000 

0.00000 

0.00000 

IMF5 
  

  

    

0.000001 

0.86854 

0.12394 

1.4110e-07 

0.176395 

0.020874 

7.087172 

4.923836 

5.937530 

0.00000 

0.00000 

0.00000 

IMF6 
  

  

    

0.000001 

0.76570 

0.23093 

1.3554e-07 

0.114766 

0.018947 

7.377896 

6.671837 

12.18821 

0.00000 

0.00000 

0.00000 

IMF7 
  

  

    

0.000001 

0.09652 

0.88455 

1.0645e-07 

0.008564 

0.043197 

9.394082 

11.27043 

20.47712 

0.00000 

0.00000 

0.00000 

IMF8 
  

  

    

0.000002 

0.10291 

0.89145 

1.8609e-07 

0.012609 

0.033281 

10.74749 

8.161631 

26.78555 

0.00000 

0.00000 

0.00000 

IMF9 
  

  

    

0.0000001 

0.094704 

0.899026 

1.5428e-07 

0.009503 

0.047287 

6.481722 

9.965695 

19.01212 

0.00000 

0.00000 

0.00000 

REST 
  

  

    

0.000001 

0.095354 

0.901476 

1.3697e-07 

0.010075 

0.063218 

7.301785 

9.464417 

14.2598 

0.00000 

0.00000 

0.00000 
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Figure 4.5  The volatility estimation of the training set. 

 

The NIG-MSA model that has been trained can be used to predict the 

volatility of the test set series. The basic idea of the volatility estimation comes from 

the assumption that although the returns series is non-stationary in a long time period, 

its volatility structure is relatively stationary. So, we suppose that the test set consists 

of 10 IMF components, and use the GARCH (1, 1) model which has been modeled to 

forecast the volatility of the each component. Then the 10 volatility prediction series 

are integrated to generate the final volatility prediction. In order to evaluate the 

performance of the NIG-MSA model, the Nor-GAR model is selected as the reference 

method, their prediction results of volatility as shown in Figure 4.6.  
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Figure 4.6  The volatility estimation of the test set. 

 

4.3.2  Time-varying quantile estimation 

In the NIG-MSA model, the distribution parameters could be time-variant 

as well. Figure 4.7 show how the quantile varies as time passes, which means that we 

could not keep the how assumption that the devolatilized returns are identically 

distributed. Instead, we estimated the dynamic quantiles based on the test set data. In 

Figure 4.7, we show the dynamic quantile estimations of the three probability levels, 

from the top the evolving NIG quantiles for 0.5, 0.05   and 0.005  . A more 

detailed description is shown in Table 4.3 which contains four statistical metrics: 

Minimum, Maximum, Mean and Standard deviation. It gives the descriptive statistics 

of dynamic quantiles estimated by NIG-MSA technique. This provides evidence that 

the more extreme the probability levels, the greater the quantile varies as time passes. 
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For the extreme probability 0.005  , the variety range value is 0.3538 and the 

standard deviation is 0.1049. However, for the probability 0.5  , the variety range 

value is 0.0323 and the standard deviation is 0.0053. This inspires us to consider that 

we should use dynamic quantiles to calculate the VaR, especially for the extreme 

events.  

 

Table 4.3  Descriptive statistics of the dynamic quantiles under different confidence 

levels. 

  =0.005  =0.01  =0.025  =0.05  =0.25  =0.5 

Min -3.6719 -3.2147 -2.5134 -1.9833 -0.6840 0.0329 

Max -3.3181 -2.8895 -2.3133 -1.8621 -0.6605 0.0651 

Mean -3.5937 -3.1385 -2.4645 -1.9515 -0.6751 0.0489 

S.d 0.1049 0.1033 0.0627 0.0370 0.0082 0.0053 
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Figure 4.7  Dynamic quantiles estimation of test set. 

 

4.3.3 Value at risk and backtesting  

Value at risk (VaR) can answers the question: How much can one lose 

with   probability over the pre-set horizon. The volatility estimation as well as the 

distribution assumption of the devolatilized returns is essential to the VaR based risk 

management. We can calculate VaR using the formula ,t tVaR q  . But in practice, 

one is interested in the prediction of VaR. In the NIG-MSA approach, we robustly 

estimated the volatility ˆ t . Because the volatility process is a supermartingale, so we 

use the estimate today as the volatility forecast 1t   for tomorrow, i.e. 1
ˆ

t t   . 

Further, we calculate the NIG distribution parameters of the devolatilized returns and 

estimated the dynamic quantile q̂ . Then, the VaR at the probability level   was 

predicted as 
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 , 1 1
ˆ ˆ

t tVaR q   . (4.9) 

The daily VaR predictions of S&P 500 returns test set are displayed in 

Figure 4.8. The VaR forecasts are different between the NIG-MSA model and the 

Nor-GAR model. At the 5% probability level, there are more than 53 exceptions 

observed in Nor-GAR model and more than 50 exceptions observed in NIG-MSA 

model. Their exception rate respectively is 5.44% and 5.19%, both are very close to 

the probability level 5%. However, at the 0.5% probability level, the exceptions rate 

of the two models is 0.83% and 0.42% respectively. This means that as the probability 

level decreases to some extreme level, the gaps of these two models get larger. Figure 

4.8 gives the quantitative statistics of the testing set.  

We employ the back testing procedures to evaluate the validation of the 

VaR calculation. The standard is that a VaR calculation should not underestimate the 

market risk. Let N  denote the number of exceptions at time , 1,2,...,t t T . We hope 

that the proportion of exceptions /N T  equal with the fixed probability level  . The 

hypothesis test is given as: 

0 1: [ ] , : [ ] .H E N T H E N T    

Jorion (2001) proposed using the likelihood ratio statistic, 

2log[(1 ) ] 2log[(1 / ) ( / ) ]T N N T N NLR N T N T       ,                  (4.10) 

to test this hypothesis. Under 0H , the statistic LR  is asymptotically 2 (1)  

distributed. 
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Figure 4.8  Dynamic Value at Risk forecasting of test set. 

 

Table 4.4 summarizes the results of the backtesting for the test data. We 

compare the NIG-MSA model with the Nor-GAR model under four probability 

levels: 0.5%, 1%, 2.5% and 5%. It shows that the NIG-MSA model gives more 
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accurate predictions at each probability level than the Nor-GAR model. Especially 

under extreme probability level 1% and 0.5%, the Nor-GAR model fails to provide 

acceptable results under 95% confidence level.  

 

Table 4.4  Backtesting results for the S&P 500 returns. 

Model   N/T LR p-value 

Nor-GAR 0.005 0.0083 6.1576 0.0131* 

0.01 0.0135 3.8902 0.0486* 

0.025 0.0284 1.0807 0.2986 

0.05 0.0544 1.7706 0.1833 

NIG-MSA 0.005 0.0042 0.1455 0.7029 

0.01 0.0104 0.0149 0.9029 

0.025 0.0260 0.1581 0.6909 

0.05 0.0519 0.0780 0.7801 

* indicates the rejection of the model under confidence level 95%. 

 



 

 

 

CHAPTER V 

CONCLUSION AND FURTHER RESEARCH  

 

This thesis proposes two Value-at-Risk estimation models, based on two 

volatility models and statistical learning method for financial time series data. The 

empirical analysis illustrates that our Value-at-Risk estimation models are available 

and effective. 

The first is the A-PMCMC (Adaptive Particle Markov China Monte Carlo) 

approach. We primarily propose a new stochastic volatility model with leverage effect, 

non-constant conditional mean and jumps. Then, we propose an A-PMCMC 

algorithm to simultaneously estimate the model parameters and the latent variables. 

The A-PMCMC approach is used to estimate the VaR of stock and exchange rate 

returns, and the estimated results show that the proposed A-PMCMC model is 

excellent. 

The second is a hybrid model that integrates the GARCH model with NIG 

distribution and multi scale analysis method. It is called NIG-MSA model. In the 

multi scale analysis method, the EMD is used to decompose the financial time series 

data and the SVR is used to integrate predicted volatility. The NIG-GARCH model 

fully considers the non-stationary feature of financial time series and the non-normal 

distribution of the returns. Comprehensive simulation experiments illustrate that the 

proposed model has superior performance. 

For the future research, we will investigate the risk spillover between financial 
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time series based on the multivariable volatility model and statistical learning method. 

Specially, we expect to apply the idea of multiple time-scale analysis to forecast 

volatility of multivariable financial time series. 
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