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ศศิธร  อนนัตโสภณ : รูปแบบค่าสินไหมทดแทนและการก าหนดเบ้ียประกนัภยัโดยใชก้าร
แจกแจงผสมอนนัต ์(AN INSURANCE CLAIM AND PRICING MODEL USING 
INFINITE MIXTURE DISTRIBUTIONS) อาจารยท่ี์ปรึกษา : ศาสตราจารย ์ดร.ไพโรจน์  
สัตยธรรม, 116 หนา้.  

 

งานวจิยัน้ีมีวตัถุประสงคเ์พื่อศึกษาการสร้างรูปแบบการแจกแจงผสมอนนัต ์ ของความ
สูญเสียดา้นประกนัวินาศภยัส าหรับขอ้มูลรายเด่ียวและน ารูปแบบท่ีไดน้ั้นไปก าหนดเบ้ียประกนัภยั 
ในการศึกษาคร้ังน้ีรูปแบบของความสูญเสียดา้นประกนัภยั ประกอบไปดว้ย 2 ส่วนคือ ส่วนของ
การจ าลอง และส่วนของการน าไปใช ้ซ่ึงจะมีการอธิบายดงัต่อไปน้ี 

ส่วนการจ าลอง : กลุ่มตวัอยา่งการทดลองจะถูกจ าลองใหเ้ป็นการแจกแจงของความสูญเสีย
แบบผสม ซ่ึงประกอบไปดว้ยการแจกแจงลอกนอร์มอล แกมม่า และไวบูลล ์ ขอ้มูลท่ีใชจ้  าลองโดย 
MATLAB ซ่ึงกระท าซ ้ ากนั 250 คร้ัง การประมาณค่าพารามิเตอร์ส าหรับรูปแบบของการแจกแจง
แบบดั้งเดิม (classical distribution) และการแจกแจงแบบผสมอนนัต ์ (infinite mixture distribution)  
ใชว้ธีิภาวะน่าจะเป็นสูงสุด (Maximum Likelihood Estimate : MLE) มีขนาดของกลุ่มตวัอยา่งท่ีผา่น
การทดสอบวา่เป็นกลุ่มตวัอยา่งท่ีเหมาะสม จ านวน 99 ตวัอยา่ง สถิติท่ีใชใ้นการทดสอบกบักลุ่ม
ตวัอยา่งเหล่าน้ีคือ โคโมโกรอฟ-สไมร์นอฟ (Kolmogorov-Smirnov test : K-S test) ผลสรุปวา่ ค่า 
D  value ของการแจกแจงแบบผสมอนนัต ์ มีค่าความคลาดเคล่ือนนอ้ยกวา่เม่ือเปรียบเทียบกบัการ
แจกแจงแบบดั้งเดิม 

ส่วนของการน าไปใช ้ : งานวจิยัน้ีใชข้อ้มูลรายเด่ียวของการจ่ายค่าสินไหมทดแทนของการ
ประกนัภยัรถยนตใ์นปี 2552 ของบริษทัประกนัวนิาศภยัแห่งหน่ึงในประเทศไทย จ านวน 1,296 
ขอ้มูล มีลกัษณะสอดคลอ้งกบัการแจกแจงแบบผสมอนนัต ์ดว้ยระดบัความเช่ือมัน่ 99% 

การก าหนดราคาประกนัภยั : การก าหนดราคาเบ้ียประกนัภยั  เราจะใชต้วัแบบเชิงเส้นวาง
นยัทัว่ไป (Generalized Linear Model : GLM) เม่ือตวัแปรตามอยูใ่นรูปแบบการแจกแจงแบบผสม
อนนัต ์ มี 3 รูปแบบ ประกอบไปโดย อาย ุ เพศ และอายแุละเพศ โดยใชผ้ลรวมค่าคลาดเคล่ือน
สัมบูรณ์ (Sum of Absolute Error : SAE), ค่ากลางของความคลาดเคล่ือนสัมบูรณ์ (Mean Absolute 
Error : MAE) และค่ากลางของความคลาดเคล่ือนก าลงัสอง (Mean Square Error : MSE) ผล
การศึกษาพบวา่ รูปแบบท่ีประกอบไปดว้ยอายแุละเพศ ใหค้่าความคลาดเคล่ือนนอ้ยกวา่ เม่ือ
เปรียบเทียบกบัเฉพาะรูปแบบอาย ุ และเฉพาะรูปแบบเพศ ดงันั้นจะใชผ้ลลพัธ์จากรูปแบบท่ี
ประกอบไปดว้ยอายแุละเพศเพื่อท่ีจะค านวณค่าเบ้ียประกนัภยั โดยใชก้ารคูณของค่าเฉล่ียสินไหม
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The objective of this study is to construct a novel insurance claim model 

employing infinite mixture distributions for individual data, and use the model for 

pricing of insurance premiums. In this study, the insurance claim modeling consists of 

two parts, namely, Simulations and Application which are explained as follows :  

Simulations : the sample groups are simulated by a combination of claim 

distributions which are Lognormal, Gamma and Weibull. Data sets were created using 

MATLAB with 250 iterations. The parameter estimation used for both, classical and 

infinite mixture distributions, is the Maximum Likelihood Estimate (MLE). Having 

tested sample size by running numerous combinations of claim distributions and data 

sizes, we found 99 combinations yielding optimum sample sizes. Hence, we 

introduced Kolmogorov-Smirnov test (K-S test) to match these samples with the 

classical and infinite mixture distributions. The D values of the infinite mixture 

distributions showed lower errors, when compared with the classical distributions. 

Application : Individual data of motor insurance claims for the year 2009 from 

a non-life insurance company in Thailand were matched to the infinite mixture 

distributions. The 1,296 observations could be fitted to an infinite mixture distribution 

at a confidence level is 99%. 
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Insurance Pricing : to price the insurance premium, the Generalized Linear

Model (GLM) with response variables of infinite mixture distribution were utilized.

Three models were employed, inducing age, gender, and age and gender, respectively.

Evaluating Sum of Absolute Enors (SAE), Mean Absolute Errors (MAE) and Mean

Square Errors (MSE), we found that the model incorporating both age and gender

carries less error compared to the age model and the gender model individually. Then,

we use the results from the age and gender model to calculate insurance premiums

using multiplication of the means of Claim Severity and Claim Frequency. Finally,

the premium outcome is a fair individual insurance premium, without interference.
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CHAPTER I 

INTRODUCTION      

 
1.1  Introduction and Motivation 

 A primary attribute of the actuary has been the ability to successfully apply 

mathematical and statistical techniques to insurance claim data, both in its analysis 

and interpretation. The modeling of claims is an important task for claim estimation, 

since a good estimation of a claim leads to good Insurance Pricing. Therefore, we 

focus on two concerns of the actuary, which are Claim Modeling and Insurance 

Pricing. 

Claim Modeling means the ability to predict claims as accurately as possible 

in order to estimate future company liabilities. There are two major methods to model 

claims which are the modeling of Claim Severity and of Claim Frequency. Claim 

Severity refers to the monetary claim on an insurance claim and is usually modeled as 

a non-negative continuous random variable using mixed distributions, (Tes, 2009). 

Whereas the Claim Frequency is the number of claims. The classical distributions can 

not be fitted to arbitrary claim data. 

In general, mixture models incorporate finite or infinite mixture distributions. 

The finite mixture distribution is one of the methods used to obtain new probability 

distributions. In the statistical literature, the finite mixture models emerged in the 

1960s and 1970s. They were used for modeling of unobserved heterogeneity in the 

population.  
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 Many authors presented the modeling of finite mixture models, i.e.,  

Mohamed, Ahmad and Noriszura (2010) who proposed a model of aggregate claims 

based on a compound Poisson-Pareto distribution. Moreover, a paper of Sattayatham 

and Talangtam (2012) presented finite mixture Lognormal distributions and applied 

the models to motor insurance claims data. Mauro et al. (2012) proposed finite 

mixture Skew Normal distributions and applied them to the insurance claim data set 

of Danish fire losses. Recently, Erisoglu, Servi, Erisoglu and Calis (2013) used two 

mixture gamma distributions for the estimation of heterogeneous wind data sets. 

  A finite mixture distribution is limited by the number of components (k), 

which depends on the mean clustering. In order to solve this problem, we are 

interested in employing infinite mixture distributions. One of the reasons for using an 

infinite mixture model is to obtain new probability distributions and work with 

unknown parameters which will be simpler than to work on finite mixture 

distributions. Infinite mixture distributions are described in Hogg, Craig and McKean 

(2005), Klugman et al. (2008) and Catherine, Merran, Nicholas and Brian (2011). 

 The modeling of claims leads to the pricing of insurance premiums. The 

Insurance Pricing concepts compose a priori and a posteriori pricing, (David, 2015). 

There are many other statistical methods, namely; expected value, standard deviation, 

variance, semi- variance, Wang Transform, Esscher Transform and etc.  

 Traditionally, the expected (average) claim is the most widely used        

measure to obtain the premium that is transferred from the insured or policyholder to 

the insurer. The average claim measure leads to assigning a single insurance premium 

rate. Such single rate insurance premiums are unfair for most customers since the risk 

factors of policyholders, i.e., driver’s age, gender, marital status, type of car driven or 
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vehicle’s age, are different. To solve this problem, the insurance company should 

define different rates of insurance premiums with fairer premiums. Since the group 

samples for an insurance premium pricing have never agreed with the normal 

distribution, in this Thesis, we then employ the Generalized Linear Model (GLM) to 

analyse the sample cases. The GLM in general, has been developed from regression 

models using response and covariate variables. The response variables come from a 

distribution in the exponential family. Therefore, estimation of response variables 

according to the principle of GLM uses a link function which depends on the 

distribution of the response variables. Additionally, we introduce the Maximum 

Likelihood Estimate (MLE) to estimate the model parameters. To trace back, the early 

development of the GLM occurred in the 1970s and 1980s, and the GLM is well 

explained by McCullagh and Nelder (1989), Dobson (2002), Jonge and Heller (2008). 

Ohlsson and Johansson (2010) stipulated many important illustrations of how to use 

GLMs in non-life Insurance Pricing. Haberman and Renshaw (1996) reviewed the 

applications of generalized linear models to actuarial problems.  

  

1.2  Historical Review 

 A substational number of Claim Models were derived by many authors who 

have investigated and discussed Claim Severity and constructed some new 

distributions  using infinite mixture distributions. Frangos and Karlis (2004) 

investigated a model of Claim Size distribution which has Exponential-inverse 

Gaussian distribution. The model is fitted to car accident claims data which comes 

from a large Greek insurance company. Emilio et al. (2008) proposed a negative 

binomial inverse Gaussian distribution (NBIG) which is applied to automobile 
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insurance. The NBIG distribution is preferred to the negative binomial and Poisson 

distribution for computing automobile insurance premiums. Recently, Pacakova and 

Zapletal (2013) proposed the Pareto distribution which is derived from the 

Exponential and Gamma distributions. This model provides a better fit to the claim 

amounts in compulsory third party liability of motor vehicles insured by some Czech 

insurance company. 

 In Insurance Pricing, many authors investigated the risk factors of automobile 

insurance for appropriate pricing, for example, Arthur (1994) used the GLM as a 

comprehensive modeling tool for the study of the claims process (Claim Frequency 

and Claim Severity) in the presence of covariates. In that context, he developed an 

application of the motor insurance claims experience for a recent calendar year, and 

later adopted by many leading U.K. insurance companies. Kart et al. (2000) explained 

how a dynamic pricing system can be built for personal line insurance by using the 

statistical technique of GLM for estimating the risk premiums. Roosvelt and Mostry 

(2004) proposed that the GLM model should be used for determining claim 

settlements and breaking down claim costs, according to the risk factors which 

provide a logical analysis. Geoff and Serhat (2007) discussed the most frequent 

mistakes made by companies beginning to build GLMs. Recently, Silvie and Lenka 

(2014) proposed an estimate of annual Claim Frequency for vehicle insurance based 

on GLM. The case study was based on 57,410 vehicles, and results confirm the 

importance of three factors, which are age group of the policyholder, vehicle age, and 

area of residence. 
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1.3  Objective and Overview of the Thesis  

  The objective of this study is to construct a novel insurance claim model 

employing infinite mixture distributions for individual data, and use the model for 

pricing of insurance premiums. In this study, the insurance claim modeling consists of 

two parts, namely, Simulations and Application. In this study, we employ GLM for 

stimulating infinite mixture distrition and use most likely estimstiom (MLE) to unveil 

parameter estimations. 

 The Thesis consists of five chapters.  Chapter II presents the preliminaries and 

some of the mathematical and statistical background used in this Thesis. Chapter III 

proposes the Claim Model, which is constructed from an infinite mixture distribution. 

The MLE is provided for the estimation of the parameter of the distribution. We 

executed numerical experiments of sample groups to be fitted to the infinite mixture 

distribution. An application to observed data is given in this section. Chapter IV 

presents the construction of a GLM, at which the response variables are modeled by 

an infinite mixture distribution. A comparison of the results of the predicted values of 

Claim Severity from all possible risk factors is also represented in this section. The 

GLM has been applied to calculate the premium for the observed data. The 

conclusions, discussion, and further research are shown in the last chapter. 

 The next chapter explains the basic knowledge of experimental statistics  

which will be the fundament of the construction of the models in Chapter III and 

Chapter IV. 



CHAPTER II 

PRELIMINARIES  

 

 In this chapter, we introduce the definitions and theories of some of the 

mathematical and statistical material that will be useful for claim modeling and 

insurance pricing in this research study. 

  

2.1  Events and Probability Theory  

 We review the definitions of events and probability theory which can be found 

in Brezeniak and Zastawniak (1999).  

Definition 2.1 Let   be a non-empty set. A field  Ƒ on   is a family of subsets 

of   such that  

1. the empty set  Ƒ ; 

2. if B   belongs to Ƒ, then so does the complement ;B   

3. if 1 2, ,B B  is a sequence of set in Ƒ, then their union 1 2B B  also 

belongs to Ƒ. 

Definition 2.2 Let Ƒ be a field  on .  A probability measure P  is a  

     :P  Ƒ  0,1  

such that    

1.   1;P    
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2. if 1 2, ,B B  are pairwise disjoint sets (that is, 
i jB B    for i j  ) 

belonging to Ƒ, then      1 2 1 2P B B P B P B       

The triple (Ω,Ƒ,P) is called a probability space. A set belonging to Ƒ is called 

an events. 

 

2.2  Random Variables 

Definition 2.3 If Ƒ is a field  on Ω, then a function :X   is said to be Ƒ- 

measurable if 

 X B   Ƒ  

for every Borel set B  .  If (Ω,Ƒ,P) is a probability space, then such a function

X  is called a random variable. 

Definition 2.4 The  field X   generated by a random variable :X R  

consists of all sets of the form    ,X B  where B   is a Borel set in .  

Definition 2.5 Every random variable :X   gives rise to a probability measure  

     
   XP B P X B   

on  defined on the field  of Borel sets B  .  We call XP  the distribution 

of .X    

 

2.3  Distribution Functions 

 We review the distribution function which can be found in Knight (1999). 

Definition 2.6 Let X  be a random variable on the probability space (Ω,Ƒ,P). We 

define  : 0,1XF 
 
by  



8 

 

  
       : .XF x P X x P X x       

The function XF  is called the distribution function of .X  

The distribution function satisfies the following basic properties : 

1. If x y  then    .F x F y  ( F  is a non-decreasing function.) 

2. If y x  then    .F y F x
 
( F is a right-continuous function although it 

is not necessarily a continuous function.) 

3.    lim 0; lim 1.
x x

F x F x
 

   

Definition 2.7 A random variable Y  is discrete if its range is a finite or countably 

infinite set. That is, there exists a set  1 2, ,S s s  such that   1.P Y S   

Definition 2.8 The frequency function of a discrete random variable Y  is defined by 
 

                                              
   .f y P Y y   

The frequency function of a discrete random variable is known by many other names, 

such as probability mass function, probability function and density function. 

Definition 2.9.  A random variable X  is called continuous if its distribution function 

can be expressed as  

                                              
    ; ,

x

F x f u du x


   

for some integrable function  : 0,1f   called the probability density function (pdf) 

of .X  

Note : If f  is a pdf then 

  1f x dx
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because      lim lim 1.

x

x x
f x dx f t dt F x



 
 

     

 In the following, we refer to definitions of expected value and variance which 

can be found in Hogg, Craig and McKean (2005). 

Definition 2.10. Let X  be a random variable. If X  is a continuous random variable 

with pdf  f x  and 

  ,x f x dx





   

 then the expectation of X is 

    .E X x f x dx





   

If Y  is a discrete random variable with pmf  p y  and 

  ,
y

y p y   

then the expectation of Y  is  

   .
y

E Y yp y  

Definition 2.11. Let X  be a random variable whose expectation exists. The mean 

value   of X  is defind as  .E X 
 

Definition 2.12. Let X  be a random variable with finite mean   such that 

 
2

E X  
 

 is finite. Then the variance of X  is defined as  
2

.E X  
 

 It is 

usually denoted by 2  or by  .Var X
 

Then  Var X  equals
 

 
22 2 22 ;E X E X X            
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and since E  is a linear operator, 

 2 2 22E X E X        

    
2 2 22E X        

    
2 2.E X      

Definition 2.13. (Moment Generating Function (mgf)). Let X  be a random variable 

such that for some 0,h   the expectation of tXe  exists for .h t h    The generating 

function of X  is defined as function     ,tXM t E e  for .h t h    We will use the 

abbreviation mgf to denote moment genrating function of a random variable. 

 In the following, we recall some distributions of random variables and 

definitions of mixture models which can be found in Klugman, Panjer and Willmot 

(2008). 

 

2.4  Lognormal Distribution  

         A random variable X  is said to be Lognormally distributed with parameters 

  and   denoted by  , ,X LN    if: 

CDF :     
ln

; , 0, 0.X

x
F x R x


 



 
    

 
 

PDF :     
 

2

2

ln1
exp ,

22
X

x
f x

x



 

 
  

 
 

 

Moment:    
2 21

exp .
2

kE X k k 
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2.5  Exponential Distribution  

         A random variable X  is said to be Exponentially distributed with parameter 

  denoted by   ,X Exp   if:   

CDF :
    

  1 ; 0, 0.
x

XF x e x 


     

PDF :      ,

x

X

e
f x








 

Moment:     1 , 1.k kE X k k        

 

2.6  Inverse Exponential Distribution  

         A random variable X  is said to be Inverse Exponentially distributed with 

parameter  denoted by   ,X IExp   if: 

CDF :      ; 0, 0.
x

XF x e x 


  
 

  PDF :       2
,

x

X

e
f x

x







 

Moment:     1 , 1.k kE X k k       

 

2.7  Inverse Pareto Distribution  

         A random variable X  is said to be Inverse Pareto distributed with parameters 

  and   denoted by  , ,X IPa    if: 

CDF :      ; 0, 0, 0.X

x
F x x

x
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PDF :     
 

1

1
,X

x
f x

x















 

Moment:    
   

 

1
, 1.

k

k
k k

E X k
 




   
       

 

        

 

   

!
,

1

k

k
k

E X
k



 


     

 if k  is negative integer. 

 

2.8  Mixture Models  

         Mixture Models are discrete or continuous weighted combinations of 

distributions. One motivation for mixing is that the underlying phenomenon may 

actually be composed of several phenomena that occur with unknown probabilities. 

 

2.8.1   The Finite Mixture Models 

Definition 2.14 A random variable X  is a 1intk po mixture  of the random 

variables 1 2, , , kV V V  if its cdf is given by 

       
1 21 2 ,

KX V V k VF x a F x a F x a F x     

where all 0ja   and 1 2 1.ka a a     

Definition 2.15 A variable component mixture distribution has a distribution function 

that can be written as  

   
1 1

, 1, 0, 1, , , 1,2, .
K K

j j j j

j j

F x a F x a a j K K
 

     
 

 

1
The words “ Mixed ” and “ Mixture ” have been used interchangeably to refer to the type of 

distribution described here as well as distributions that are partly discrete and partly continuous. 
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2.8.2   The Infinite Mixture Models  

The mixture of distributions is sometimes called compounding. Moreover, it 

does not need to be restricted to a finite number of distributions. 

Theorem 2.1 Let X  have pdf  X
f x 


 and cdf   ,X

F x 


 where   is a paremeter 

of .X  X  may have other parameters, however they are not relevant. Let   be a 

realization of the random variable   with pdf  .f   Then the unconditional pdf of 

X  is    

      ,X X
f x f x f d  

   

where the integral has been taken over all values of   with positive probability. The 

resulting distribution is a mixture distribution. The distribution function can be 

determined from 

     
x

X X
F x f y f d dy  



    

   
x

X
f y f dy d  



    

    .
X

F x f d  
   

Moments of the mixture distribution can be found from 

 k kE X E E X       
 

and, in particular, 

      .Var X E Var X Var E X           
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2.9  Maximum Likelihood Estimation (MLE) 

The method of maximum likelihood provides estimators which are usually 

quite satisfactory and most frequently used in actuarial mathematics. 

(Knight, 1999). Suppose that  1, , nX XX  are random variables with joint 

density or frequency function  :f x  where .   Given outcomes ,X = x  we 

define the likelihood function 

   ; ;L f  x  

for each possible sample  1, , ,nx xx the likelihood function  L   is a real-valued 

function defined on the parameter space .   

Definition 2.16 Suppose that for a sample    1, , ,nx x L x is maximized (over 

 ) at   :S  x   

    sup L L S x





   

(with  S x  ). Then the statistic  ˆ S  X  is called the maximum likelihood 

estimatior (MLE) of .   

Likelihood equations: If the range of the data does not depend on the data, the 

parameter space   is an open set, and the likelihood function is differentiable with 

respect to  1, , p θ  over ,  then the maximum likelihood estimate ̂  satisfies 

the equations 

 ˆln

k

L
o








θ
 for 1, , .k p   

These equations are called the likelihood equations and  ln L   is called the 

log- likelihood function. 
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2.10  Linear Models 

The standard reference for generalized linear models is McCullagh and Nelder 

(1989). 

        A vector of observations x  having n  components is assumed to be a 

realization of a random variable X  whose components are independently distributed 

with means .μ  The systematic part of the model is a specification for the vector μ  in 

terms of a small number of unknow parameters 
1, , .p   

In the case of ordinary linear models, this specification takes the form 

1

,
p

j j

j




μ z

                        (2.1) 

where the s  are parameters whose values are usually unknown and have to be 

estimated from the data. If we index the observations by ,i  then the systematic part of 

the model may be written 

 
1

; 1, , ,
p

i i ij j

j

E X z i n 


                      (2.2) 

where ijz  is the value of the jth  covariate for observation .i  In matrix notation 

(where μ  is 1,n  z  is n p  and β  is 1p ) we may write 

,μ Zβ  

where Z  is the model matrix and β  is the vector of parameters. 

     The components of X  are independent normal variables with constant variance 

2  and 

 E X μ  where .μ Zβ                    (2.3) 

 



16 

 

2.11  The Components of a Generalized Linear Model  

 The Generalized Linear Model is an extension of classical linear models for 

situations where the response has a non-normal distribution, for example, a Binomial, 

Poisson, Gamma, inverse Gaussian, Exponential. Thus, a GLM consists of three 

components: 

1. The random component : The distribution of the response variable, iX  (for 

the ith  of n  independent sample observations) is a member of an 

exponential family. 

2. The systematic component : covariate 1 2, , , pz z z  produce a linear 

predictor η  given by 

1

.
p

ij j

j

z 


η  

3. Link function : The relationship between the random and systematic 

component. A smooth and invertible linearizing link function   ,g   which 

transforms the expectation of the response variable,  ,i iE X   to the 

linear predictor : 

  .ig  η  

    The classical linear models have a normal (or Gaussian) distribution in 

component 1. and the identity function for the link in component 3. and the link 

function in component 3. may become any monotonic differentiable function. 

 

2.11.1   Exponential Family  

      The theory of generalized linear models is based on a set of probability 

members of an exponential family. The exponential family can be written in the form 
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 ; , exp ,X

d x e b
f x c x

a

 
  



  
  

                       (2.4) 

for some specific functions    ,a b   and  .c   If   ,d x x  then the function is in 

canonical form for the random variable .X  Likewise, if   ,e    it is in canonical 

form for the parameter .  If the substitutions  d x x  and  e    are made, the 

above equation becomes 

    

 
  

 
 ; , exp , .X

x b
f x c x

a

 
  



  
  

  

                           (2.5) 

We call   the canonical parameter, and   the dispersion parameter or scale 

parameter. If the distribution is parameterized in terms of the mean   of ,X  so that 

 g   for some function ,g  then  g   is the canonical link.  

 

2.11.2   Likelihood Functions for Generalized Linear Models  

   We assume that each component of X  has a distribution in the exponential 

family, taking the form 

    

 
  

 
 ; , exp , .X

x b
f x c x

a

 
  



  
  

  

                  (2.6) 

We write    , ; log ; ,Xl x f x     for the log-liklihood function considered as a 

function of   and ,  x  being given. The mean and variance of X  can be derived 

easily from the well known relations. 
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0
l

E


 
 

 
                   (2,7) 

and 

      

22

2
0.

l l
E E

 

   
    

   
            (2.8) 

We have from (2.6) that 

 
  

 
 ; , ,

x b
l x c x

a

 
 




   

whence 

      

  
 

x bl

a



 





                     (2.9) 

and 

      

 

 

2

2
,

bl

a



 





                            (2.10) 

where prime denotes differentiation with respect to .  

From (2.7) and (2.9) we have 

  
 

0 ,
bl

E
a

 

 

 
  

 
 

so that  

   .E X b  
 

Similarly, from (2.8), (2.9) and (2.10) we have 
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 2

var
0 ,

b X

a a



 


 

 

so that 

     var .X b a 
 

Thus the variance of X  is the product of two functions ; one,   ,b  depends on the 

canonical parameter (and hence on the mean) only and will be called the variance 

function, while the other is independent of   and depends only on .  The variance 

function considered as a function of   will be written  .V   

The function  a  is commonly of the form 

  ,a





  

where ,  called the dispersion parameter, is constant over observations, and   is a 

known prior weight that varies from observation to observation. 

 

2.11.3   Link Functions  

   The link function relates the linear predictor   to the expected value   of a 

datum .x  In classical linear models the mean and the linear predictor are identical, 

and the identity link is plausible in that both   and   can take any value on the real 

line. However, when we are dealing with counts and the distribution is Poisson, we 

must have 0,   so that the identity link is less attractive, in part because   may be 

negative while   must not be. Models for counts based on independence in cross- 
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classified data lead naturally to multiplicative effects, and this is expressed by the log 

link, log ,   with its inverse .e   

     For the binomial distribution we have 0 1   and a link should satisfy the 

condition that it maps the interval  0,1  on to the whole real line. We shall consider 

three link functions, namely: 

1. Logit    

     

  log ;
1

g


 


 
   

   

2. Probit 

   
   1 ;g     

where     is the Normal cumulative distribution function; 

3. Complementary Log-Log 

   
    log log 1 .g       

The power family of link is important at least for observations with a positive 

mean. 

This family can be specified either by
 

 

     

 1





                                       (2.10a) 

with the limiting value 

                  log ;   as 0,                        (2.10b) 
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or by 

; 0,

log ; 0.

 


 

 



 

The first form has the advantage of a smooth transition as   passes through zero, but 

with either form special action has to be take in any computation with 0.   

 

2.11.4   Sufficient Statisfics and Canonical Links  

   Each of the distributions in the exponential family has a special link function 

for which there exists a sufficient statistic equal in dimension to   in the linear 

predictor .ij jη z  These canonical links, as they will be called, occur when 

,  η  

where   is the canonical parameter as defined in (2.5). The canonical links for 

distributions in the exponential family are thus: 

   Normal   ,g   η  

   Poisson   log ,g   η
 

 
  Gamma   1,g   η

 

inverse Gaussian   2.g   η  

Note that, if the distribution of the response varies, iX  is a member of exponential 

family in canonical form then  g   is called the canonical link function.  
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The next chapter explains how to construct a claim model which will be an 

infinite mixture distribution that is not a classical distribution.  



CHAPTER III 

CLAIM MODELING 

 

 In this chapter, the infinite mixture distributions will be applied to match with 

two sets of data. The first data sets comprises 99 sample groups generated from a 

combination of Lognormal, Gamma and Weibull distributions (Stephen and Richard, 

2011), in order to simulate insurance data and test work ability of our model. Then 

our model is applied to the second data sets which consists of 1,296 actual insurance 

observations. 

 Considering individual claim policies, let , 1,2, , .iX i n   be the Claim 

Severity of the thi  claim. It is assumed that the random variables 1 2, , , .nX X X  are 

independent and identically distributed (i.i.d.). Some assumptions and restrictions are 

specified as follows: 

          Assumption 1: Claims Severity are non-catastrophic claims. 

         Assumption 2: No deductible and no reinsurance agreement. 

         Assumption 3: A recorded Claim Severity is equal to a 1,296 observation 

         Assumption 4: The claim distributions are skewed to the right. 

  Assume that the portfolio Claim Severity arises from the 99 sample groups, 

e.g., combination of claim distributions which are Lognormal, Gamma and Weibull 

derived by numerical experiments, as listed in subsection 3.3. Moreover, we employ 

the probability density function (pdf) and the distribution function (df) of claim 

distribution which are specified in Appendix C to fitting the 99 sample groups. 
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3.1  Classical Distributions   

 Using the 1,296 observations of motor insurance claims from public non-life 

insurance companies in Thailand, we fit this data to some classical distributions, 

(Stephen and Richard, 2011) i.e., Exponential, Inverse Exponential and Lognormal. 

The maximum likelihood estimation (MLE) is used to estimate the parameters in each 

distribution. 

 

3.1.1   The Model  

(1) The probability density function (pdf) for the Exponential distribution is  

 
1

exp  ; , 0X

x
f x R x

 

 
    

 
                     (3.1) 

(2) The pdf for the Inverse Exponential distribution is 

  2
exp  ; 0, 0Xf x x

x x

 


 
    

                                   (3.2)

 

(3) The pdf for the Lognormal distribution is  

 
 

2

2

ln1
exp  ; , 0, 0.

22
X

x
f x R x

x


 

 

 
     

 
 

 

                  (3.3) 

 

3.1.2   Estimation for the Model  

Let , 1,2, , .iX i n  be the Claim Severity of the thi  claim. It is assumed that 

the random variables 1 2, , , nX X X  are independent and identically distributed 

(i.i.d.).  
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Consider the Claim Severity    , 1,2, ,ix i n , paid for the thi  contract. We 

shall fit the data set  ix  to the Exponential, Inverse Exponential and Lognormal 

distributions.  By  MLE, we obtain estimators for the parameters   and   as follows: 

(1) With the probability density function (pdf) for the Exponential 

distribution in (3.1), the likelihood function is  

  
 

1

1
exp ; , 0.

n
i

i

x
L R x 

 

 
    

 
  

                      Then 

  
 

1

1
ln ln exp

n
i

i

x
L 

 

 
  

 


 

   1

1
ln exp

n
i

i

x

 

 
  

 


 

   1

1
ln

n
i

n
i

x

 

  
     

   


 

   1

ln ; , 0.
n

i

i

x
n R x 



 
    

 
  

  Setting the partial derivatives 
 ln L 






 to zero, we have 

    

 
2

1

ln 1
0.

n

i

i

L n
x



   

 
  


  

An estimator ̂  for the parameter   can be obtained by solving the equation 

 ln
0

L 







 where ̂  is given by:

 

1ˆ .

n

i

i

x

n
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(2) With the pdf for the Inverse Exponential distribution in (3.2), the 

likelihood function is  

  
  2

1

exp ; 0, 0.
n

i i i

L x
x x

 
 



 
    

 
  

                      Then 

  
  21

ln ln exp
n

i
i i

L
x x

 




  
    

    

    
2

1

ln exp
n

i i ix x

 



  
   

  


 

   
2

1

1
ln ln exp

n

i i i

n
x x






  
    

  


 

   

2

1

ln ln
n

i

i i

n x
x






 
    

 


        

                         1

ln 2ln ; 0, 0.
n

i

i i

n x x
x


 



 
     

 
  

   Setting the partial derivatives 
 ln L 






 to zero, we have 

 

1

ln 1 1
0.

n

i i

L

x



  


  


  

An estimator ̂  for the parameter   can be obtained by solving the equation 

 ln
0

L 







 where ̂  is given by:

 

1

ˆ  .
1n

i i

n

x
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(3) 
 

With the pdf for the Lognormal distribution in (3.3), the likelihood 

function is  

  
 

 
2

2
1

ln1
, exp ; , 0, 0.

22

n
i

i i

x
L R x

x


   

 

 
     

 
 

  

                      Then 

  
 

 
2

2
1

ln1
ln , ln exp

22

n
i

i i

x
L

x


 

 

 
  

 
 


 

         

 
2

2
1

ln1
ln exp

22

n
i

i i

x

x



 

 
  

 
 


 

                   

 
2

2
1

ln
ln ln 2 ln

2

n
i

i

i

x
n n x


 



 
     

  


    

                            
 

2

2
1

1
ln ln 2 ln ln

2 2

n

i i

i

n
n x x  



 
     

 


         

         

Setting the partial derivatives 
 ln L 






 and 

 ln ,L  






to   zero, 

we have 
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1

ln ,
0

n

i

i

L n
x

 
 

 





 
   


  

An estimator ̂  and ̂  for the parameter   and   can be obtained by solving these 

two equations: 

 ln ,
0,

L  







 and 

 ln ,
0.

L  
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The solutions are 1

ln
ˆ ,

n

i

i

x

n
 


and 

 
2

1

ˆln

ˆ

n

i

i

x

n



 






 respectively. 

 

3.1.3   Goodness of Fit Test 

Goodness of Fit (GOF) test means that one measures the compatibility of a 

random sample with a theoretical probability distribution function. One GOF test is 

the K-S test, to decide whether a sample comes from a hypothesized continuous 

distribution and that based on the Empirical Cumulative Distribution Function 

(ECDF) which is written to 

   
1

.nF x Number of observation x
n

   

The K-S test is defined by 

   *sup    ,n X
x

D F x F x   

where 
*
XF  is the theoretical cumulative distribution of the distribution being tested. 

The K-S test is defined by: 

 0H  :  The data follow a specified distribution. 

1H  :  The data do not follow a specified distribution.  

Level of critical values: The hypothesis regarding the distributional form is rejected at 

the chosen significance level ( ) if the test statistic D  is greater than the critical 

value obtained, see Table C.3 in Appendix C.4. Furthermore, we can calculate the 

P value from the D value and translate the result of the hypothesis test.  
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Those three classical distributions were applied to the 1,296 observations.  An 

analysis involving some comparisons are presented from the results of the statistical 

tests. 

Table 3.1 The fitting for classical distributions.
     

 

Distribution K-S tests Estimated 

  D value P value Parameter 

Exponential      0.1961      0.0100       4ˆ 1.766 10    

Inverse Exponential      0.0759     0.0100      3ˆ 4.190 10    

Lognormal      0.0466     0.0100     ˆ 1.1804   

         ˆ 8.9672   

 

Table 3.1 shows the statistical test value for fitting the classical distributions to 

the 1,296 observations. We found that none of those classical distributions could be 

fitted to the 1,296 observations at significance level 0.01,   since the P value is 

less than 0.01. Hence we can reject the null hypothesis and conclude that the data set 

does not follow these three classical distributions at a 99% confidence level. 

Therefore, we selected non-classical distributions which may fit to the 1,296 

observations. Next we employed the infinite mixture distribution in 3.2 as a candidate 

to fit the data with Lognormal, Exponential and Inverse Exponential distributions. 

Firstly, the K-S test verified that the Lognormal distribution is a better fit than the 

Exponential and Inverse Exponential distributions. However, the Lognormal 

distribution cannot derive a cdf. As a result, we have to ignore it. At last, we selected 

the second best distribution, which is the Inverse Exponential distribution.  

 

3.2  Infinite Mixture Model 

 This section describes the construction of infinite mixture distributions and an 

estimation of parameters using MLE. 
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We represent an insurance Claim Severity by the random variable .X  Let 

 Xf x   denote the pdf of the insurance Claim Severity if the risk parameter is 

known to be .  The heterogeneity in the insurance portfolio is due to variability in the 

parameter .  

Let   ( )G P  
 
be the cdf of ,  where  is the risk parameter viewed as 

a random variable.
 

 G   is called the mixing distribution. Let  g   be the pdf of .  

Then  

      , ,X X

R

h x f x g d x R  


    

is the unconditional pdf of .X   

 

3.2.1   The Model  

An infinite mixture model is composed of Gamma as mixing distribution and 

Inverse Exponential as mixed distribution. Let X  be the Inverse Exponential random 

variable with parameter .  We want to mix an infinite number of Inverse Exponential 

distributions, each with a different value of .  We let the mixing distribution have a 

pdf of ,  namely, a Gamma with parameters   and .  

We begin with to the pdf of the Gamma distribution which is written as 

 
 

 1 exp ; , 0, 0,g



     



   


 

and mix it with the pdf of the Inverse Expontial distribution which is written as 

  2
exp ; 0, 0,Xf x x

x x

 
 

 
    

   

to obtain the infinite mixture model written as : 



31 

 

 
 

 1

2

0

exp expXh x d
x x


  

  




 
     

 
  

 

1 1

2

0

exp d
x x

   
 



  
 

   
  

  

 

   

 

1

1 1

12

0

1

11
exp

1 1

x
d

x x

x









 


  
 





 





 
            

      
 

 



 

 
 

12
1

1






























x

x
 

   
 

1

1
; , 0, 0.

1

x
x

x

 




 






  


                        (3.4) 

Observe that formula (3.4) is similar to the pdf of Inverse Pareto distribution 

1
, .IPa 


 
 
   

In fact, the distribution of  Xh x  is  
1

1 ; , 0, 0,
1

H x x
x



 


 
    

 
 which is 

the cdf of the Inverse Pareto distribution 
1

, .IPa 


 
 
 

 Please see Appendix A for 

further details. 

 

3.2.2   Estimation for the Model  

Considering the Claim Severity ix  paid for the thi  contract, we fit the 

1
,IPa 


 
 
 

 distribution in (3.4) to the 1,296 observations using MLE. The estimated 
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value of parameters   and   can be obtained by the following mothod. 

Assume that 
1

X ~ ,IPa 


 
 
 

  with density  
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The likelihood function can be written as 
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The log-likelihood function is in the form
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Hence, the partial derivatives of the log-likelihood function are 
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The two estimations ̂  and ̂  for parameters   and   can be obtained by solving 

these two equations. 
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                        (3.6) 

Because of the difficulty of solving (3.5)-(3.6) algebraically, we preferred to solve the 

equations numerically by using the Newton-Raphson method to estimate parameters 

  and .  We used MATLAB to do this work. These methods are explained in B.2.1 

of Appendix B. 

 

3.3  The Simulation  

We have performed numerical experiments which MATLAB for the 99 

sample groups, to fit using infinite mixture distributions.  

The 99 sample groups were generated by simulations under the following 

assumptions.  

(1) Sample size 

: 200, 400, 600, 800, 1000, 1500, 2000, 4000, 10000, 30000n  and 50000    

for the groups of two mixed components. 

: 150,450,600,750,1500,3000,9000,12000,30000,45000n  and 60000   

                      for the groups of three mixed components. 

(2) The Simulated data 

                   (2.1) Claim distributions used: Lognormal, Gamma and Weibull. 

                   (2.2) The combination of claim distributions: The ix  is generated based 

on right skewed distributions according to sample size .n  We assume that the 

heterogeneity in the portfolio Claim Severity is due to variability in the parameters 
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and distributions. The group samples are simulated by combination of the claim 

distributions as shown on Table 3.2. 

Table 3.2 The mixed components. 

Components        Parameters        Distribution 

2 Lognormal/ Lognormal Lognormal/Gamma 

 

Gamma/ Gamma Lognormal/Weibull 

  Weibull/ Weibull 

 

3 

Lognormal/ Lognormal/ 

Lognormal Lognormal/Gamma/Weibull 

 

Gamma/ Gamma/ Gamma 

   Weibull/ Weibull/ Weibull   

 

Each component mixed has the same number of claims, for details see section 

C.3 of Appendix C. The simulations comprise 99 groups.  

(3) The model of infinite mixture distributions  

            The model used for fitting to the sample groups is the infinite mixture 

distribution. A classical distribution (Inverse Exponential distribution) is used as a 

control to assess the performance of the infinite mixture distributions. To reach the 

stablity of the results, we ran up to 250 iterations in the simulation. 

A flowchart of the claim modelling process, is shown in the Figure 3.1. 
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Figure 3.1 The flowchart of the claim modeling process. 

Stage 1: Data size. 

The restriction of data size. 

                  Stage 2: The Simulated data. 

The data set generated by simulation. 

Start 

Stage 3: Parameter estimation. 

Using MLE for classical distributions. 

Stage 4: Fitting of model. 

Assess the goodness of fit test by K-S test. 

Stage 5: Record of results 

Stage 6: Iteration 250 

A 

Stage 7: Record of results 
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Figure 3.1 The flowchart of the claim modeling process (Continued). 

 

 

 

A 

Stage 8: Infinite mixture model. 

Stage 10: Fitting of model. 

Assess the goodness of fit test by K-S test. 

Stage 9: Parameter estimation. 

Using MLE for infinite mixture distributions. 

Stage 11: Record of results 

Stage 12: Iteration 250 

A 

Stage 13: Record of results 
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Figure 3.1 The flowchart of the claim modeling process (Continued). 

 

 

 

 

 

Printing the results 

A 

Stage 16: Application and Evaluation 

Stop 

Stage 15: Summation and Conclusion 

Stage 14: 

Comparison 

of models 
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3.4  Simulation Results 

The objective of our claim modeling is to assess whether the heterogeneous 

portfolio Claim Severity data can be fitted to the infinite mixture distributions. The 99 

sample groups  were simulated by combinations of claim distributions, which are 

Lognormal, Gamma and Weibull distributions. The parameter estimation was 

performed by MLE for the classical (Inverse Exponential) and the infinite mixture 

distributions. We referred   K-S test as a statistical test, in which the symbols are 

defined for explanation the following 

_D CL  mean D value of classical distribution 

_D IF  means D value of infinite mixture distribution 

_P CL  means P value of classical distribution 

_P IF  means P value of infinite mixture distribution 

We present the value of _ , _ , _D CL D IF P CL  and _P IF  in tables. The 

results are shown in the following tables. 

Tables 3.3-3.6 show the values of _ , _ , _D CL D IF P CL  and _P IF  for 

each sample size. The results are that the infinite mixture distribution can be suitable 

for data mixed of Lognormal and Lognormal when 200, 400, 600, 800,1000.n   We 

found that for 94 groups the infinite mixture has a D value in the  K-S test which is 

less than with the classical distributions. Although the infinite mixture may not be 

suitable for the data sets, it can modified so that it sits better than some classical 

distribution.  
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Table 3.3 The fitting distribution to 2 mixed components (parameters). 

2 mixed components n D_CL D_IF P_CL P_IF 

Lognormal/Lognormal 200 0.4542 0.0575 <0.01 >0.20 

 

400 0.4490 0.0548 <0.01 >0.15 

 

600 0.4451 0.0501 <0.01 >0.05 

 

800 0.4494 0.0485 <0.01 >0.05 

 

1000 0.4484 0.0475 <0.01 >0.01 

 

1500 0.4490 0.0457 <0.01 <0.01 

 

2000 0.4529 0.0446 <0.01 <0.01 

 

4000 0.4538 0.0434 <0.01 <0.01 

 

10000 0.4505 0.0423 <0.01 <0.01 

 

30000 0.4511 0.0413 <0.01 <0.01 

  50000 0.4512 0.0413 <0.01 <0.01 

Gamma/Gamma 200 0.4405 0.3294 <0.01 <0.01 

 

400 0.4674 0.3266 <0.01 <0.01 

 

600 0.4673 0.3259 <0.01 <0.01 

 

800 0.4673 0.3256 <0.01 <0.01 

 

1000 0.4673 0.3257 <0.01 <0.01 

 

1500 0.4673 0.3253 <0.01 <0.01 

 

2000 0.4673 0.3253 <0.01 <0.01 

 

4000 0.4672 0.3253 <0.01 <0.01 

 

10000 0.4672 0.3251 <0.01 <0.01 

 

30000 0.4672 0.3250 <0.01 <0.01 

  50000 0.4672 0.3250 <0.01 <0.01 

Weibull/Weibull 200 0.3859 0.1999 <0.01 <0.01 

 

400 0.3865 0.1950 <0.01 <0.01 

 

600 0.3866 0.1953 <0.01 <0.01 

 

800 0.3823 0.1956 <0.01 <0.01 

 

1000 0.3795 0.1969 <0.01 <0.01 

 

1500 0.3789 0.1900 <0.01 <0.01 

 

2000 0.3834 0.1934 <0.01 <0.01 

 

4000 0.3784 0.1929 <0.01 <0.01 

 

10000 0.3802 0.1919 <0.01 <0.01 

 

30000 0.3816 0.1904 <0.01 <0.01 

  50000 0.3811 0.1905 <0.01 <0.01 
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Table 3.4 The fitting distribution to 2 mixed components. 

2 mixed components n D_CL D_IF P_CL P_IF 

Lognormal/Gamma 200 0.5588 0.2937 <0.01 <0.01 

 

400 0.5759 0.2941 <0.01 <0.01 

 

600 0.5448 0.2944 <0.01 <0.01 

 

800 0.5578 0.2943 <0.01 <0.01 

 

1000 0.5597 0.2944 <0.01 <0.01 

 

1500 0.5605 0.2942 <0.01 <0.01 

 

2000 0.5546 0.2940 <0.01 <0.01 

 

4000 0.5674 0.2941 <0.01 <0.01 

 

10000 0.5570 0.2941 <0.01 <0.01 

 

30000 0.5577 0.2941 <0.01 <0.01 

  50000 0.5600 0.2942 <0.01 <0.01 

Lognormal/Weibull 200 0.4649 0.1884 <0.01 <0.01 

 

400 0.4664 0.1900 <0.01 <0.01 

 

600 0.4623 0.1763 <0.01 <0.01 

 

800 0.4635 0.1754 <0.01 <0.01 

 

1000 0.4617 0.1758 <0.01 <0.01 

 

1500 0.4608 0.1787 <0.01 <0.01 

 

2000 0.4603 0.1767 <0.01 <0.01 

 

4000 0.4606 0.1747 <0.01 <0.01 

 

10000 0.4614 0.1745 <0.01 <0.01 

 

30000 0.4608 0.1739 <0.01 <0.01 

  50000 0.4609 0.1739 <0.01 <0.01 
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Table 3.5 The fitting distribution to 3 mixed components (parameters). 

3 mixed components n D_CL D_IF P_CL P_IF 

Lognormal/Lognormal/ 150 0.3723 0.1272 <0.01 <0.01 

Lognormal 450 0.3322 0.1143 <0.01 <0.01 

 

600 0.3369 0.1193 <0.01 <0.01 

 

750 0.3647 0.1122 <0.01 <0.01 

 

1500 0.3415 0.1182 <0.01 <0.01 

 

3000 0.3424 0.1167 <0.01 <0.01 

 

9000 0.3561 0.1144 <0.01 <0.01 

 

12000 0.3556 0.1141 <0.01 <0.01 

 

30000 0.3634 0.1136 <0.01 <0.01 

 

45000 0.3465 0.1134 <0.01 <0.01 

  60000 0.3427 0.1130 <0.01 <0.01 

Gamma/Gamma/Gamma 150 0.4724 0.2388 <0.01 <0.01 

 

450 0.4723 0.2386 <0.01 <0.01 

 

600 0.4723 0.2386 <0.01 <0.01 

 

750 0.4723 0.2386 <0.01 <0.01 

 

1500 0.4722 0.2383 <0.01 <0.01 

 

3000 0.4722 0.2383 <0.01 <0.01 

 

9000 0.4722 0.2382 <0.01 <0.01 

 

12000 0.4722 0.2382 <0.01 <0.01 

 

30000 0.4721 0.2382 <0.01 <0.01 

 

45000 0.4721 0.2382 <0.01 <0.01 

  60000 0.4721 0.2382 <0.01 <0.01 

Weibull/Weibull/Weibull 150 0.4350 0.1548 <0.01 <0.01 

 

450 0.4350 0.1548 <0.01 <0.01 

 

600 0.4363 0.1508 <0.01 <0.01 

 

750 0.4393 0.1531 <0.01 <0.01 

 

1500 0.4382 0.1529 <0.01 <0.01 

 

3000 0.4392 0.1517 <0.01 <0.01 

 

9000 0.4361 0.1503 <0.01 <0.01 

 

12000 0.4383 0.1506 <0.01 <0.01 

 

30000 0.4368 0.1507 <0.01 <0.01 

 

45000 0.4367 0.1506 <0.01 <0.01 

  60000 0.4367 0.1504 <0.01 <0.01 
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Table 3.6 The fitting distribution to 3 mixed components. 

3 mixed components n D_CL D_IF P_CL P_IF 

Lognormal/Gamma/ 150 0.3945 0.2357     < 0.01        < 0.01 

Weibull 450 0.4177 0.2378     < 0.01        < 0.01 

 

600 0.3861 0.2382      < 0.01        < 0.01 

 

750 0.4301 0.2378      < 0.01        < 0.01 

 

1500 0.4300 0.2375       < 0.01        < 0.01 

 

3000 0.4241 0.2341 < 0.01        < 0.01 

 

9000 0.4329 0.2354 < 0.01        < 0.01 

 

12000 0.4322 0.2335 < 0.01        < 0.01 

 

30000 0.4465 0.2342 < 0.01        < 0.01 

 

45000 0.4471 0.2337 < 0.01        < 0.01 

  60000 0.4435 0.2335 < 0.01        < 0.01 
 

3.5  An Application 

   Rehearsing to fit the 1,296 observations with the Inverse Pareto distribution 

1
,IPa 





 
, we used the K-S test for testing of model fitting. The histogram for the 

observations in log scale is illustrated in Figure 3.2. 

Table 3.7 shows the statistical test value for fitting of  the Inverse Pareto 

distribution and the estimated parameters. The results of the K-S test reveal a P 

value for Inverse Pareto distribution of 0.0482 which is greater than 0.01. Hence, we 

can conclude that the 1,296 observations can be fitted by the Inverse Pareto 

distribution with a 99% confidence level. The estimated parameters for the Inverse 

Pareto distribution are ˆ 4.7260   and 
4ˆ 8.7870 10 .    

Table 3.7 The fitting of Infinite Mixture distribution.  

Distribution K-S test Estimated 

  D value P value Parameter 

Inverse Pareto    0.0381     0.0482       ˆ 4.7260   

          
4ˆ 8.7870 10    
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In Figure 3.3, the solid line shows the Empirical Cumulative Distribution Function 

(ECDF) while the dashed line is the cdf of the Exponential distribution. 

In Figure 3.4, the solid line shows the ECDF while the dashed line is the cdf of the 

Inverse Exponential distribution. 

In Figure 3.5, the solid line shows the ECDF while the dashed line is the cdf of the 

Lognormal distribution. 

In Figure 3.6, the solid line shows the ECDF while the dashed line is the cdf of the 

Inverse Pareto distribution. 
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                           Figure 3.2  Histogram (log scale). 

 

     

Figure 3.3  Model versus data cdf plot          Figure 3.4  Model versus data cdf  plot 

                   for the claim data set.                                for the claim data set. 

 

       

Figure 3.5  Model versus data cdf plot          Figure 3.6  Model versus data cdf plot       

                   for the claim data set.                                     for the claim data set.               
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Figures 3.7, 3.8, 3.9 and 3.10 showed the P-P plot for Exponential, Inverse 

Exponential, Lognormal and Inverse Pareto distributions, respectively.  

 

         

Figure 3.7  P-P plot for Exponential           Figure 3.8  P-P plot for Inverse  

                   Distribution.                                                 Exponential distributon.  

                                                               

           

Figure 3.9  P-P plot for Lognormal                 Figure 3.10  P-P plot for Inverse Pareto 

                   distribution.                                                       distribution. 

 

This chapter has described the construction of the infinite mixture model, and 

the next chapter is to use the results of this model to price an insurance premium. 
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CHAPTER IV 

INSURANCE PRICING  

 

 Premium determination is a primary task in the insurance industry:  to conduct 

business and also to make it competitive in the market. Pricing of the insurance is 

based on risk factors such as driver’s age, gender, marital status, type of car driven or 

vehicle age which involves constitutional rights and actuarial fairness. 

 In practice, the linear models are often inadequate because response variables 

rely on normal distribution. The Claim Severity or loss distributions are defined on 

the positive real line, especially the fat-tailed and skewed right distribution, whereas 

the Claim Frequency based on a discrete distribution is a natural approach for 

counting data and making non-negative observations, (Tes,  2009). Referring to 

Ohlsson and Johansson (2010), by far the most practical solution to linearise the non-

life motor insurance is the generalized linear model (GLM). In other words, the GLM 

drops that restriction and provides a more suitable solution to this problem. The GLM 

is an extension which allows the model to follow the distribution, rather than other 

normal distributions.  

  Pure Premium can determine from two components which are frequency and 

severity distributions of the potential claims. To price the insurance premium, it is 

necessary to take the mean of the frequency and the severity distribution which 

produces the pure premium:   

    Frequency Severity PurePremium   
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In insurance premium pricing, the GLM is often used to estimate premiums for 

different individual characteristics of the insured person, including the characteristics 

of the car. 

 In this study, data consists of the Claim Severity for each policy and several 

characteristics of the insured person, such as age and gender. Each policy is assumed 

to have only one claim. Therefore, the expected value of Claim Frequency equals 1. 

 The aim of this research is to solve the problem of insurance pricing of motor 

insurance claims using the observations from the public non-life insurance companies 

in Thailand, where the data of Claim Severity are modeled by an Inverse Pareto 

distribution. We employed GLM and mainly focused on the types of a) age and b) 

gender, which are the two major rating factors. 

 Our work in this section is to organize as follows: Section 4.1 presents the 

Testing of Data beginning with testing normality in 4.1.1, nonlinearity in 4.1.2 and 

introduction of nonlinear model Generalized Linear Model (GLM) in 4.1.3. In Section 

4.2, we refer to the concept of GLM employing Inverse Pareto in 4.2.1. In the next 

section 4.2.2, we present the estimation of GLM employed Inverse Pareto, followed 

by and its corresponding results in section 4.3. In other word, these sections using the 

materials and methods for calculating the predicted values of Claim Severity, since it 

shows the construction of a GLM where the response is modeled by Inverse Pareto 

distribution. Moreover, a comparison of the results from all the factors concerned is 

also presented in 4.3. Finally, pricing of the insurance premium for different 

individual characteristics of the insured person are presented in the Application for 

Prediction of the Insurance Premium in section 4.4. 
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4.1  The Test of Data  

We classify the data set by testing normality, nonlinearity and then explain the 

Generalized Linear Model (GLM) in Section 4.1.1-4.1.3. 

 

4.1.1   Test for Normality 

 Test for Normality by using the Shapiro Wilk Test, and found that p-Value < 

e-16 < 0.05. Thus, the distribution is not a normality.  

 

4.1.2   Test for Nonlinearity 

 (1) Test for Unit root using the following: 

       (a) Augmented Dickey-Fuller Test, and found that p-Value = 0.01 < 0.05.  

Hence, the distribution is a nonlinearity. 

     (b) Phillips-Perron Test, and found that p-Value = 0.01 < 0.05. Hence, the 

distribution is a nonlinearity. 

 (2) Test for trend stationarity using Kwiatkowsk – Phillips – Schmidt – Shin  

(KPSS) Test, and found that p-Value = 0.01 > 0.05 Hence, the distribution is a 

nonlinearity. 

We will use Program R for test Normality and Nonlinearity (see Appendix D).  

 

4.1.3   The Generalized Linear Model (GLM)  

 The objective of both linear models and GLM are to express the relationship 

between an observed response variable, ,X  and a number of covariates, .z  Both 

models view the observations 1 2, , , nx x x  as realizations of the random variables 
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1 2, , , .nX X X  Thus, X  represents a vector of the random variables 1, , .nX X  

Whose observations are of the form 

1

.

n

x

x

 
 
 
  

  

For the classical linear model in the form, the components of X  have independent 

normal distributions with constant variance 2 and 

 i iE X      where    
1

; 1, , .
p

i ij j

j

z i n 


   

 GLM is the extended version of linear model. It allows the population means 

depend on a linear predictor via a nonlinear link function, transforming between 

response and covariate variables. 

 The goal of building a successful model, however, lies in selecting the suitable 

link function to use. 

For example 

Assume that  i iX Poisson  . 

 so that    log
p

i i ij j

j

g z     is canonical link. 

The mean of ,iX  is exp .
p

i ij j

j

z 
 

  
 


 

This will ensure that all of the predicted 

values are positive. The log link is the most suitable link function to use. The 

canonical links often have good properties, so the choosing of the link function should 

be based on prior expectation. Alternativly, some other software packages used to 

predict the values are availabe, i.e., GLIM, R, S-PLUS, SAS, Stata, Genata, SYSTAT, 

etc. However, those software are not suited to the simulation of the Inverse Pareto 

distribution. 
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 As previously mentioned, the predicted values by the GLM technique provide 

a response random variable, ,X  that has a distribution in the exponential family.  

 In connecting to this work from Chapter III, we refer to the claim data which 

has been fitted with Inverse Pareto distribution. Finally, we define a flowchart of the 

premium calculation that leads to pricing the insurance premium. 
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Figure 4.1 The flowchart of the premium calculation. 

A 

Stage 7: Choose Model fit Data 

Stage 1: Infinite Mixture Model 

Stage 3: Construct a Generalized Linear Model 

Start 

Stage 4: MLE for parameter estimation 

Stage 5: Predict value 

(Expected Claims Severity) 

 Case1: Considering Age 

 Case2: Considering Gender 

 Case3: Considering Age and Gender  

Stage 6:  

Comparison 

of results 

result 

Stage 2: Test for Normality and Nonlinearity 
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Figure 4.1 The flowchart of the premium calculation (Continued). 
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4.2  Construction of a Generalized Linear Model 

   We explain the Inverse Pareto model in 4.2.1 and the Estimation for the 

model in 4.2.2. 

Definition 4.1 (Klugman et al., 2008) Suppose a parametric distribution has 

parameters   and ,  where   is the mean and   is a vector of additional 

parameters. Let its cdf be  , .F x    The mean must not depend on the additional 

parameters and the additional parameters must not depend on the mean. Let z  be a 

vector of covariates for an individual, Let   be a vector of coefficients, and let     

and  c y  be functions. The generalized linear model then states that the random 

variable, ,X  has as its distribution functions. 

   , , ,F x F x  z  

where   is such that    .Tc   z  

 Let   1, ,
T

nz zz  be the column vector of the z  values and  1, ,
T

p    

the column vector of coefficients. 

 

4.2.1   The Inverse Pareto Model 

 Assume that  
1

, ,X Inverse Pareto 


 
 
 

 abbreviated to
1

, ,X IPa 


 
 
 

 

with density 

 
 

1

1
, ; , 0, 0

1
X

x
h x x

x

 




   






  


 

and distribution function (cdf)  
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1

, 1 .
1

XH x
x



 


 
  

 
 

Consider the moment of ,X   

   

 

1
, 1.k

k

k k
E X k




 

   
       

 

Approximate  E X  with kE X  when for k  close to 1.  E X  does not exist. 

We estimate the value of kE X    when k  is equal to 0.1,0.2, , 0.9, 0.91, , 0.99. 

We show 0.95.k 

 

   

 
0.95

0.95

0.95 1 0.95
,E X



 

   
    

 

Approximate  0.95 
 

by  1   when  0.001, 2 .  Therefore, the 

approximation error is not over  0.10.   

   

   

 0.95

1 0.05

 

  




 
0.95

0.05




  

Thus, 
 0.95

0.95

0.05
.E X






     

In this thesis, we assume that mean or expected value of an Inverse Pareto distributed 

random variable X with parameters   and 
1


 are given by 

 
0.95

0.05
.






 

Next, we construct a GLM for the observations for some non-life insurance 

public companies in Thailand when the Claim Severity is modeled on Inverse Pareto 

distribution. 
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 None of the two parameters   and 
1


 in the Inverse Pareto distribution 

reflect the mean. To make the mean one of the parameters, we can set 
 

0.95

0.05





  

or, equivalently, replacing   with 
 

0.95

.
0.05




 

The cdf is now 

 
 

0.95

0.051
, 1

1
H x

x



 


 
  

   

and the pdf is 

 
 

   

   

0.950.95

0.95

0.95 1
0.050.05

1
0.05

0.05
, .

1

x

h x

x








 



 
 

   

 
 

  

 






 

By definition, one may link the covariates to the mean by using  n    and  

   exp .T Tc z z 
 
Setting     Tn c z   , then  exp .T z   

Note that it is expected that all of the predicted values are positive. 

 For each observation, the Inverse Pareto distribution uses the parameter   

directly, while the parameter   is derived from the value of   and the covariates for 

that observation. 

 Our interest lies in investigating the risk factors that affect the Claim Severity 

for each policy and specifically the risk factors that correspond to the insured person. 

 The data consist of the Claim Severity for each policy which we want to 

predict and several characteristics of the driver are based on two rating variables: age 

of driver and gender of driver. 
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(a) Let 1, , nX X  be the Claim Severities of n  independent claims. These are  

considered to be random quantities. 

(b) Let 2iz  be the age of the driver and let and 3iz  be the gender of driver (e.g. 

the thi element of 3iz is 1 when the thi observation is women, and 0  if men). 

These are considered as fixed quantities. 

The matrix notation presents as follows: 

(a) Let X  be the n  dimensional column vector of response variables; 

 1, , .
T

nX XX  

(b) Let   be the p  dimensional column vector of coefficients; 

 1, , .
T

p    

(c) Let z  be the p  dimensional column vector of covariates;  1, , .
T

pz zz

The design matrix is 

11 12 1

21 22 2

1 2

p

p

n n np

z z z

z z z

z z z

 
 
 
 
 
  

 
If 1 1iz   then 1  is intercept of the model.  

Under the GLM, the mean of iX  is 

 
1

exp .
p

T

i i j ij

j

E X z 


 
   

 
  

 We are interested in investigating factors that affect the Claim Severity for 

each policy by considering separation in 3 cases as follows:  

Case 1: considering the age of the driver  2iz  by substitution
 

 1 1 2 2expi i iz z     
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Case 2: considering the gender of the driver  3iz  by substitution
 

 1 1 3 3expi i iz z   
 

Case 3: considering the age
 
 2iz and gender  3iz  of the driver  by substitution

 

 1 1 2 2 3 3expi i i iz z z     
 

 

4.2.2   Estimation for the Inverse Pareto Model 

Considering the amount    , 1,2, , ,ix i n  paid for the 
thi  contract. We 

shall fit the data set  ix  to the Inverse Pareto distributions. By MLE, we obtain 

estimations for parameter 1 2, ,    and 3  
as follows: 

The pdf for the Inverse Pareto distribution is 
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X

x
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Its likelihood function can be written as 
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1
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ii
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i
i
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i

x
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The log-likelihood function is in the from 

    

 
 

   

   

0.950.95

0.95

0.95 1
0.050.05

11
0.05

0.05
ln , ln

1

ii

i

i
in

i

i

x

L x

x

  

 

 


 



 
 

   

 
 

  

 
 
 

  
 
 
 

        …(4.1) 
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Case1: By substitution  1 1 2 2expi i iz z    in (4.1) 

    

 

 

 
   

   

0.95 1 1 2 21 1 2 2

1 1 2 2

0.951 1 2 2

0.95 1
0.050.05

11
0.05

0.05
ln , ln
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z zz z i ii i

i i

z zi i
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e
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e
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Hence, the partial derivatives of the log-likelihood function are 
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1 1 2 2 1 1 2 2
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1 1 2 2

1 1 2 2

1 1 2 2
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2 2
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ln
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The three estimates 
1

ˆ ˆ,   and 
2̂  for parameters 1,   and 2  can be obtained by 

solving these three equations. 
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                                                        …(4.4)

 

Case2: By substitution  1 1 3 3expi i iz z    in (4.1) 
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Hence, the partial derivatives of the log-likelihood function are 
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The three estimates 
1

ˆ ˆ,   and 
3̂  for parameters 1,   and 3  can be obtained by 

solving these three equations. 
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Case3: By substitution  1 1 2 2 3 3expi i i iz z z      in (4.1) 
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Hence, the partial derivatives of the log-likelihood function are 
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 The four estimates 
1 2

ˆ ˆ ˆ, ,    and 
3̂  for parameters 1 2, ,    and 3  can be obtained 

by solving these four equations. 
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   …(4.11) 

Because of the difficulty of solving (4.2)-(4.4), (4.5)-(4.7) and (4.8)-(4.11), with 

MATLAB, we solve the equations numerically using the Newton-Raphson method to 

estimate parameters 1 2, ,   and 3.  These methods are explained in B.2.2, B.2.3 and 

B.2.4 of Appendix B.  
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4.3  Results  

Table 4.1 shows the estimate of parameters 1 2, ,    and 3  for cases1, 2 and 3. 

Table 4.2 shows the SAE, MAE and MSE of Claim Severity for cases1, 2 and 3.  

 We proved that Case 3, selecting both the age and the gender of the driver, 

yields the minimum values of SAE, MAE and MSE. For all value of k , Case 3 

presents the best solution, followed by the results of Case 1 and Case 2. In this study, 

having tested the k  value, we found that the most fitting for GLM employed Pareto 

model is where 0.80k   because the minimum values of SAE, MAE and MSE. The 

data consists of the Claim Severity for each policy and several characteristics of the 

insured person, such as age and gender. Each policy is assumed to have only one 

claim. Therefore, the expected value of Claim Frequency is equal to 1.  

 This aim of this research is to solve the problem of insurance pricing of motor 

insurance claims using the observations from the public non-life insurance companies 

in Thailand, where the data of Claim Severity are modeled by an Inverse Pareto 

distribution. We employed GLM and mainly focused on the types of a) age and b) 

gender, at which are two major rating factors. 

 Therefore, the age of the driver has more effect on Claim Severity than the 

gender of the driver. 

 We can see that increasing the number of risk factors results in decreasing the 

SAE, MAE and MSE. Therefore, we use the expected value of Claim Severity for 

both the age and gender to the constitution in calculating the pure premium. 
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Table 4.1 The estimate of parameters 1 2, ,    and 3  for cases 1, 2 and 3. 

k Case Consider Parameter 

      1  2  
3  

0.10 Age 0.0097  11.0009 -0.0084   

 

Gender 0.0085  11.0006 

 

-0.0150 

  Age and Gender 0.0110 4.6356 -0.0067 -0.0087 

0.20 Age 0.0097 11.0015 -0.0084   

 

Gender 0.0085 11.0010 

 

-0.0150 

  Age and Gender 0.0007 3.2056 -0.0048 -0.0208 

0.30 Age 0.0097 10.0073 -0.0084   

 

Gender 0.0085 10.0051 

 

-0.0148 

  Age and Gender 0.1727 7.6537 -0.0073 -0.0064 

0.40 Age 0.0097 10.0133 -0.0084   

 

Gender 0.0008 4.7660 

 

0.0001 

  Age and Gender 0.2179 8.1064 -0.0073 -0.0063 

0.50 Age 0.0077 11.0083 -0.0084   

 

Gender 0.0161 11.8047 

 

0.1990 

  Age and Gender 0.0005 5.7110 -0.0047 -0.0219 

0.60 Age 0.0067 10.0428 -0.0083   

 

Gender 0.0078 10.0354 

 

-0.0137 

  Age and Gender 0.0740 8.3812 -0.0072 -0.0066 

0.70 Age 0.0067 10.0938 -0.0082   

 

Gender 0.0068 10.0740 

 

-0.0125 

  Age and Gender 0.0638 8.8959 -0.0072 -0.0067 

0.80 Age 0.0070 9.4124 -0.0073   

 

Gender 0.0065 9.4532 

 

-0.0013 

  Age and Gender 0.0092 9.2827 -0.0070 -0.0077 

0.90 Age 0.0127 10.7769 -0.0079   

 

Gender 0.0058 11.2173 

 

-0.0088 

  Age and Gender 0.0203 10.4978 -0.0070 -0.0072 

0.91 Age 0.0006 10.7742 -0.0057   

 

Gender 0.0060 12.0928 

 

-0.0125 

  Age and Gender 0.0765 10.7654 -0.0073 -0.0065 

0.92 Age 0.0146 10.9696 -0.0076   

 

Gender 0.0055 10.7429 

 

0.0026 

  Age and Gender 0.0307 10.8368 -0.0071 -0.0069 

0.93 Age 0.0044 11.4161 -0.0075   

 

Gender 0.0002 11.3410 

 

-0.0075 

  Age and Gender 0.0105 14.6688 -0.1199 -0.2485 

0.94 Age 0.4520 11.2278 -0.0073   

 

Gender 1.4256 11.1270 

 

0.0300 

  Age and Gender 0.0917 10.7836 -0.0073 -0.0064 

 



65 

 

Table 4.1 The estimate of parameters 1 2, ,    and 3  for cases 1, 2 and 3 

(Continued). 

k Case Consider Parameter 

      1  2  
3  

0.95 Age 0.0205  11.3959 -0.0070   

 

Gender 0.4446  11.2589 

 

0.0298 

  Age and Gender 0.0042 11.3154 -0.0063 -0.0088 

0.96 Age  21.30 10  12.1005 -0.0074   

 

Gender 0.0087 12.2754 

 

-0.0051 

  Age and Gender 0.0498 11.7006 -0.0070 -0.0070 

0.97 Age  26.55 10  12.5070 -0.0074   

 

Gender 0.0113 12.3899 

 

0.0008 

  Age and Gender 0.2958 12.1000 -0.0079 -0.0132 

0.98 Age  25.37 10   12.6416 -0.0074   

 

Gender 0.0102 12.5794 

 

0.0054 

  Age and Gender 0.1030 12.4781 -0.0070 -0.0060 

0.99 Age 0.0008 13.2945 -0.0048   

 

Gender 0.0096 13.0006 

 

0.7010 

  Age and Gender 0.0091 13.1738 -0.0067 -0.0080 
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Table 4.2 The SAE, MAE and MSE of Claim Severity for cases 1, 2 and 3. 

K Cases SAE MAE MSE 

0.10 Age 47,849,391.49 36,920.83 2,413,361,350.76 

 

Gender 64,829,822.08 50,023.01 3,405,287,643.18 

  Age and Gender    22,786,388.98 17,582.09 2,016,096,314.81 

0.20 Age  47,877,911.52 36,942.83 2,414,780,329.70 

 

Gender  64,875,081.36 50,044.04 3,447,286,306.55 

  Age and Gender  22,864,046.68 17,654.76 2,018,675,914.51 

0.30 Age  47,935,002.93 36,986.88 2,417,625,104.27 

 

Gender  64,922,709.67 50,094.68 3,452,037,612.09 

  Age and Gender  20,190,926.12 16,119.54 1,964,236,179.39 

0.40 Age  21,897,432.33 16,896.17 1,705,708,087.87 

 

Gender  22,738,315.22 17,545.00 2,014,812,535.18 

  Age and Gender  19,994,345.22 15,427.74 1,935,256,427.79 

0.50 Age  48,202,337.23 37,193.16 2,431,021,563.78 

 

Gender  178,900,886.19 138,040.81 20,037,427,889.27 

  Age and Gender  22,565,320.02 17,411.51 2,010,098,139.62 

0.60 Age  22,269,672.20 17,183.39 1,704,670,576.50 

 

Gender  26,500,854.43 20,448.19 1,731,662,136.35 

  Age and Gender  19,376,714.90 14,951.17 1,911,156,748.23 

0.70 Age  49,689,942.21 38,341.00 2,507,023,474.23 

 

Gender  66,716,690.95 51,478.93 3,584,721,748.93 

  Age and Gender  18,316,858.49 14,033.38 1,851,289,453.03 

0.80 Age 46,863,050.61 36,159.76 2,366,009,158.11 

 

Gender 48,375,509.26 37,326.78 2,452,070,913.98 

  Age and Gender  18,173,807.27 14,023.00 1,793,032,546.72 

0.90 Age 39,146,772.53 30,205.84 2,040,966,505.28 

 

Gender 81,954,773.38 63,236.71 4,880,944,140.57 

  Age and Gender 31,246,470.59 24,123.82 1,810,586,651.30 

0.91 Age 42,109,255.76 32,491.71 2,152,191,562.75 

 

Gender 210,340,106.33 162,299.46 27,158,872,375.02 

  Age and Gender 39,359,761.95 30,370.19 2,048,229,901.21 

0.92 Age  47,718,763.95 36,820.03 2,405,557,076.69 

 

Gender  50,213,699.63 38,745.14 2,531,419,820.99 

  Age and Gender  42,441,632.32 32,748.17 2,166,407,468.00 

0.93 Age  76,143,692.43 58,752.85 4,868,270,787.57 

 

Gender 93,741,058.31 72,331.06 6,082,736,406.04 

  Age and Gender  56,049,225.54 43,247.88 4,614,773,011.84 
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Table 4.2 The SAE, MAE and MSE of Claim Severity for cases 1, 2 and 3   

(Continued). 

K Cases SAE MAE MSE 

0.94 Age 62,895,835.58 48,530.74 3,313,532,325.02 

 

Gender 76,361,594.66 58,920.98 4,371,851,430.74 

  Age and Gender 40,050,534.12 30,903.19 2,073,483,552.98 

0.95 Age  75,961,985.01 58,612.64 4,349,540,732.77 

 

Gender  87,977,841.49 67,884.14 5,474,576,599.09 

  Age and Gender  71,207,968.47 54,944.42 3,943,117,041.99 

0.96 Age  160,054,575.94 123,498.90 16,162,478,279.39 

 

Gender  256,956,246.85 198,268.71 40,128,583,220.86 

  Age and Gender  104,996,388.95 81,015.73 7,428,165,351.74 

0.97 Age  247,736,566.97 191,154.76 37,594,516,256.59 

 

Gender  291,270,513.24 224,745.77 51,355,487,389.70 

  Age and Gender  155,485,746.86 119,973.57 15,311,728,378.15 

0.98 Age  285,814,251.10 220,535.69 49,796,058,829.97 

 

Gender  356,719,113.69 275,246.23 76,691,793,702.71 

  Age and Gender  242,950,487.33 187,461.80 36,160,870,453.48 

0.99 Age  623,765,849.24 481,480.94 233,535,757,437.03 

 

Gender 915,060,088.95 706,064.88 547,583,902,818.15 

  Age and Gender  506,582,034.38 392,352.66 155,818,864,966.15 
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4.4  The Application for Prediction of the Insurance Premium  

 The preceding sections show the construction of GLM. In the following 

section we are interested in determining the pure premium. 

 Pure Premium can determine from two components which are frequency and 

the severity distributions of the potential claims.  In our work, we assume each policy 

has only 1 claim, As a result, the expected value of the Claim Frequencies is equals to 

1   1. . 1 .i e E Y    On the other hand, the distribution chosen for modeling severity is 

the Inverse Pareto distribution. For pricing some insurance, taking the mean of the 

frequency and the severity distribution produces the pure premium. The model can be 

written the following form: 

   
  1,iFrequency E Y   

   

  exp ,
p

i ij j

j

Severity E X z 
 

   
 


 

   

    exp .
p

i i ij j

j

Pure Premium E Y E X z 
 

    
 
  

 Consequently, the response of the pure premium will be equal to the expected 

value of the Claim Severity because the expected value of Claim Frequency is equal 

to 1. 

 The previous chapter demonstrated the construction of the infinity mixture 

model that supported the pricing of insurance premium in this Chapter IV. Having 

achieved the major parts of the Thesis, the Conclusion follows in the next Chapter.  

 



CHAPTER V 

CONCLUSIONS      

 
 This thesis is divided into two parts which are, firstly, the claim modeling for 

an infinite mixture model and, secondly, the pricing of insurance premiums using 

GLM which is based on an infinite mixture model for response variables. To verify 

the concepts, we have used the observations of motor insurance claims for the year 

2009. The conclusion, discussion and further research are as follows. 

 

5.1  Claim Modeling  

5.1.1   Conclusion  

          For the simulations: the group samples are simulated by 99 sample groups of 

the combination of claim distributions, i.e., Lognormal, Gamma and Weibull 

distributions. Having stimulated the models, we found that the error is significantly 

less than that of the classical distribution. For the Application: the classical models, 

namely, Exponential, Inverse Exponential and Lognormal have been used by actuaries 

to fit the observations. Having used K-S test for these three classical models, the yield 

cannot meet the standard of goodness of fit. Finally, we attempted to find a solution 

by constructing an infinite mixture distribution which becomes superior to that of 

Inverse Pareto distribution. Thus, the set can be fitted to the modified Inverse Pareto 

distribution as shown by the K-S test at a significance level of 0.01.   
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5.1.2   Discussion and Further Research 

 An infinite mixture model was investigated in this research study which can be 

fitted to motor insurance claims. The infinite mixture model is useful for some 

modeling of unobserved heterogeneity in the population and for reducing the problem 

of the number of components (k) in a finite mixture model.  

  In further research, a new model can be constructed of infinite mixture 

distributions which are appropriate to our claim data set. (Please see Appendix E. for 

the new models) They can be applied to many fields, such as financial data, stock data 

and for other practical purposes.   

 

5.2  Insurance Pricing 

5.2.1   Conclusion 

 For the application of the observations, all insurance premiums are based on 

the GLM which incorporates many risk factors. We found that increasing the number 

of risk factors resulted in decreasing the SAE, MAE and MSE. Therefore, the 

expected value of Claim Severity that considers both age and gender is an appropriate 

model to use for calculating pure premiums. The expected value of Claim Frequency 

is equal to 1. Therefore, the response of the pure premium will be equal to the 

expected value of the Claim Severity.  

 

5.2.2   Discussion and Further Research 

 In insurance pricing, the GLM is one methodology which can provide the 

determination of a pure premium which is dependent on two components, frequency 

and severity distributions of the potential claims. However, the price of motor 
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insurance policies depends on individual characteristics, such as driver’s age, gender, 

marital status, type of car driven and the age of the vehicle. During the work, we has 

tried to modify the alternative software packages, i.e., GLIM and R.   

  Further research resulting from this research study should focus on a 

generalized linear model with other distributions than the exponential family.  
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APPENDIX A 

THE CUMULATIVE DISTRIBUTION FUNCTION  

   

  This section presents the cdf of the Inverse Pareto distribution 
1

, .IPa 


 
 
 

  

 

The Cumulative Distribution Function   

 The pdf of Inverse Pareto distribution 
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APPENDIX B 

NEWTON RAPHSON METHODS    

   

      This section presents the Newton-Raphson Method (See Steven (2007)).
 

  

B.1  Newton Raphson Method  

 Newton’s (or Newton- Raphson) method can be used to approximate the roots 

of any linear or non-linear equation of any degree. This is an iterative (repetitive 

procedure) method. 

 The tangent line (slope) to the curve  xfy  at the point   1 1, .x f x   

 We assume that the slope is neither zero nor infinite. Then, the slope (first 

derivative) at 1x x is 

    

 
 1

1

1

y f x
f x

x x


 


 

    
    1 1 1y f x f x x x              …(B.1) 

The slope crosses the x axis  at 2x x  and 0.y   Since this point 

    2 2 2, ,0x f x x  line on the slope line, it satisfies (B.1). By substitution,  

   
    1 1 2 10 f x f x x x  

 

     

 

 
1

2 1

1

f x
x x

f x
 


  

and in general,  
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B.2  Newton Raphson Method for Several Variables 

 (Sebah and Gourdon, 2001) The Newton-Raphson Method is used for 

estimation of 
1  and 

2  for 1̂  and 2̂  where 
1  and 

2  are the parameter of the 

distribution function. 

 By The Newton-Raphson Method, starting from the Taylor series of 
1g  and 

2g  around the point  ,, 2010   the initial values of 
1  and 

2 are obtained by the Least   

Square Method and computed in iteration until they converge to the constants  .ˆ,ˆ 21           

 We consider the Taylor series from 1g  and 2g around the point  ., 2010   

 
         20220101210120101120101211 ,,,,   gggg
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 1 10 12 2 22 1
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1
g g g g

g g g g
     

  

 2 20 21 1 11 2

11 22 12 21

1
g g g g

g g g g
     


 

           By the Newton-Raphson technique, all parameters are simultaneously 

estimated for each term. The iteration procedure is applied until the values of the 

parameters do not change or converge to the constants. Finally, we get the estimation 

value of  21, to be  21
ˆ,ˆ  where 

10 and 
20  are the initial parameters to 1 and .2  

Newton-Raphson Method for 3 and 4 variables using the same principle. 

 In Chapter III, from (3.5)-(3.6), we preferred to solve the equations 

numerically by using the Newton-Raphson method to estimate parameter   and .    

 

B.2.1   The inverse Pareto distribution  

Assume that 
1

,X IPa 
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The likelihood function can be written as follows: 
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The log-likelihood function is in the form 

   

       i
n

i

n

i

i xxnnL   


1ln1ln1lnln,ln
11  

From this the partial derivatives of the log-likelihood function follow: 

   

 
 






 n

i

i

n

i

i xxn
nL

11

1lnlnln
,ln





 

   

 
 

 




 n

i i

i

x

xnL

1 1
1

,ln












 

The two estimations ̂  and ̂  for parameters   and   can be obtained by solving 

these two equations. 
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 Therefore we solve the B.2 and B.3 by the numerical method using Newton- 

Raphson, for the estimation parameters   and .  
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%-------------------------------------------------------        
%--------------------New distribution------------------- 
%------------------------------------------------------- 
clc;  

 
s=load('D:DATA\Programming\OLAY_Program\Data5.txt'); 

  
ss=zeros; z=zeros; ms=zeros;  
Lss=zeros;  

  
n=1296; 

  
for i=1:n 
    ss(i)=s(i,1);  

     
end 

  
z=sort(ss); 

 

%-------------------------------------------------------- 
%-------------- MLE of InverseExponential --------------- 

%-------------------------------------------------------- 

 
a_ss=zeros; 

  
for i=1:n 
    a_ss(i)=1/ss(i);  
end 

 
Lss=a_ss; 
M=n/sum(Lss)  

  

%-------------------------------------------------------- 

 
FF=zeros; 

 
for i=1:n 
    FF(i)=exp(-M/z(i));  
end 

 
%------------ K-S test of InverseExponential -------------- 

 
FM=zeros;  

  
for k=1:n 
    FM(k)=k/n;  
end 

 
DIF=FM-FF 

D=Max(DIF) 
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%--------------------------------------------------------        
%---------- Newton Raphson Of New Distribution ---------- 

%--------------------------------------------------------        

 
Par1=-100;  
Par2=-100;  

  
%===================== Set initial value ================= 

  
v=0.000011; 
M=0.52286; 

  
%----------------- g1,g11,g12,g21,g2,g22 ----------------- 

  
niter = 0; 

  
while ((abs(M-Par1)>0.00001) || (abs(v-Par2)>0.00001)) 

 
DET=0; 

  
   g1=0;g11=0;g12=0;g21=0;g2=0;g22=0;  
   Xg1=0;Xg2=0;Xg11=0;Xg12=0;Xg21=0;Xg22=0;  

          
   if niter==0 
       M=M;  
       v=v;     
   else 
        M=Par1;  
        v=Par2;  
   end 

         
GG1=0;GG1_1=0;b_b=zeros;c_c=zeros; 

  
for i=1:n 
    b_b(i)=log(z(i)); 
    c_c(i)=log(1+v*z(i)); 
end 

 
GG1=sum(b_b); 
GG1_1=sum(c_c); 

  
Xg1= n/M+n*log(v)+GG1-GG1_1;  
Xg11= -n/(M^2); 

  
GG2=0;d_d=zeros;  

 
for i=1:n  
      d_d(i)=z(i)/(1+v*z(i));    
end  

  
GG2=sum(d_d);  
Xg2= (n*M)/v-(M+1)*GG2; 
GG22= 0; e_e=zeros; 

 
for i=1:n  
      e_e(i)= (z(i)^2)/(1+v*z(i))^2;            
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end  

 
GG22=sum(e_e);  
Xg22= (-n*M)/(v^2)+(M+1)*GG22; 
GG21= 0; f_f=zeros; 

 
for i=1:n  
      f_f(i)=z(i)/(1+v*z(i));     
end  

  
GG21=sum(f_f);  
Xg21= n/v-GG21; 
Xg12=Xg21; 

  

%-------------------------------------------------------- 

 
g1=Xg1 ;  
g11=Xg11;  
g12=Xg12;  
g21=Xg21;  
g2=Xg2;  
g22=Xg22;  

  
%===================== Check for DET ====================== 

  
DET=(g11*g22)-(g12*g21); 

  

%-------------------------------------------------------- 

 
Par1= M + ((g12*g2)-(g22*g1))/DET    
Par2= v +((g1*g21)-(g2*g11))/DET   

  
     niter = niter + 1 

        
     diff_Par1=abs(M-Par1) 
     diff_Par2=abs(v-Par2) 
end  

  
iteration = niter 

  
disp('===== Par1 & Par2 ====='); 

  
digits(10) 
disp(vpa(Par1));  
disp(vpa(Par2));  

  

 
%------------------ End of Newton Raphson ------------------- 
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%------------------- For new distribution ------------------- 

  
FF_new=zeros;  

 
Par1 
Par2 

  
for i=1:n 
   a1=Par2*z(i)+1; 
   b1=1/a1; 
   c1=1-b1; 
   d1=c1^Par1; 
   FF_new(i)=d1;              
end 

  
FF_new; 

  

  
%---------------K-S test of new distribution-------------- 

  
FM=zeros;  

  
for k=1:n 
   FM(k)=k/n; 
End 

 
DIF=FM-FF_new; 

  
D_new=Max(DIF)  

  
D % to comparison   
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 In Chapter IV, from (4.2)-(4.4), (4.5)-(4.7) and (4.8)-(4.11), we preferred to 

solve the equations numerically by using the Newton-Raphson Method to estimate 

parameters 1 2, ,    and 3.    

 

B.2.2   Newton Raphson Method for estimation of 1,   and 2.   

  The three estimation 
1

ˆ ˆ,  and 
2̂  for parameters 1,   and 2  can be 

obtained by solving these three equations. 
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                                                                                                                              …(B.6) 

Therefore we solve the (B.4) - (B.6) by the numerical method using Newton-Raphson, 

for the estimation parameters 1,   and 2.   

By Newton-Raphson; 1 2 3 11 12 21 13 31 22 23 32 33, , , , , , , , .g g g g g g g g g g g g    
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B.2.3   Newton Raphson Method for estimation of 1,   and 3.  

 The three estimations 1
ˆ ˆ,   and 2̂  for parameters 1,   and 3 can be 

obtained by solving these three equations. 

 
 

 

1 1 3 3

1 1 3 3 1 1 3 3

1 1 3 3

1 1 3 3

0.95
0.05 0.05

0.05

1

0.05

0.95 ln
1

1
0.95 0.95 ln 1 0

0.05
0.05

0.95 ln
1

i i

i i i i

i i

i i

z z
z z z z i

i
n

z z

i

i

z z i

i

i

e x
e e

x
n

e x

x
e x

x

 
   

 

 


  



 






  

 





 
  

 
    
 
 
  

 

  

                                                                                                                              …(B.7) 



92 

 

 
 

 
 

 

 
   

1 1 3 3 1 1 3 3

1 1 3 3

0.95 0.95

1 1 1

0.95
1

1

ln
ln

0.05 0.05
0

ln 1
0.05

i i i i

i i

z z z z

i i i i
n

i z z

i i

z z e z e x

z e x

   

 

  




 

 

 
  
 

  
 
  
  


 

                              …(B.8) 

 
 

  
 

  

 
    

1 1 3 3 1 1 3 3

1 1 3 3

0.95 0.95

3 3 3

0.95
1

3

ln
ln

0.05 0.05
0

ln 1
0.05

i i i i

i i

z z z z

i i i i
n

i z z

i i

z z e e z x

e z x

   

 

  




 

 

 
  
 

  
 
  
  

  

                    …(B.9)        

Therefore we solve the (B.7) - (B.9) by the numerical method using Newton-Raphson, 

for the estimation parameters 1,   and 3.   
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B.2.4   Newton Raphson Method for estimation of 1 2, ,    and 3.   

 The four estimations 
1 2

ˆ ˆ ˆ, ,   and 
3̂  for parameters 1 2, ,    and 3.  can be 

obtained by solving these four equations. 
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Therefore we solve the (B.10) – (B.13) by the numerical method using Newton- 

Raphson, for the estimation of the paramaters 1 2, ,    and 3.   
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APPENDIX C 

DISTRIBUTION  

   

     This section presents some special probability distributions, including 

definitions, criteria and material for our simulation and model fitting. We briefed from 

some references, that are as follows: 

1) Klugman, S.A., Panjer, H.H. and Willmot, G.E. (2008). Loss Models: From 

Data to Decisions. 

2) http://www.math.uah.edu. 

3) http://en.wikipedia.org/wiki/P-P plot. 

4) http://wiki.math.yorku.ca. 

 

C.1  Loss Distributions 

 
C.1.1   Lognormal distribution 

   A random variable X  is said to be Lognormal distributed with parameter   

and   denoted by  , .X LN    

CDF :     
ln

; , 0, 0.X

x
F x R x
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C.1.2   Gamma Distribution 

   A random variable X  is said to be Gamma distributed with parameter   

denoted by  , .X Gamma    

CDF :
   

  ; ; , 0, 0.X

x
F x x  
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C.1.3   Weibull Distribution 

              A random variable X  is said to be Inverse exponentailly distributed with 

parameter  and   denoted by  , .X Wei    

CDF :       1 exp ; , 0, 0.X
xF x x
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   Moment:    , .k k k
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C.2  Skewness Newton  

 Suppose that X  is a real-valued random variable for the experiment. We will 

let  E X   and  2 var .X    

The skewness of X  is the third moment of the standard score of :X   
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X
skew X E





  
   

     

The distribution of X  is said to be positively skewed when the probability density 

function has a long tail to the right, if the distribution is negatively skewed then the 

probability density function has a long tail to the left. A symmetric distribution is 

unskewed. (A normal distribution has a skewness equal to 0. )  

 

C.3  The Simulation  

 The simulated data by combinations of claim distributions. Each component 

mixed has the same number of claims. The simulated data by composed parameters of 

claim distributions as shown on Table C.1 and Table C.2.  

Table C.1 The 2 mixed components. 

Parameters Distributions 

Lognormal/Lognormal 

 5, 2 ,    6, 1    

Lognormal/Gamma 

 5, 2 ,    60000, 3    

Gamma/Gamma 

 2500, 1 ,    50000, 3     

Lognormal/Weibull 

 6, 1 ,    2500, 1c    

Weibull/Weibull 

 2000, 2 ,c     60000, 3c    
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Table C.2 The 3 mixed components. 

Parameter Distributions 

Lognormal/ Lognormal/ Lognormal  Lognormal/ Gamma/ Weibull 

   6, 1 , 8, 2 ,      

 10, 3    

 8, 2 ,    2000, 1 ,  

 80000, 4c    

Gamma /Gamma/ Gamma 
 

   2000, 1 , 40000, 2 ,        

 80000, 1     

Weibull/ Weibull/ Weibull 

   2000, 2 , 60000, 3 ,c c      

 80000, 4c    
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C.4  Levels of Singnificance for the K-S Test. 

 Table C.3 below lists the singnificance level ( ) for a test statistic D as 

employed in the K-S test. 

Table C.3 The level of significance for D.  

 

 

 

 

 

 

 

 

 

 
 

0.2 0.15 0.1 0.05 0.01

1 0.900 0.925 0.950 0.975 0.995

2 0.684 0.726 0.776 0.842 0.929

3 0.565 0.597 0.642 0.708 0.828

4 0.494 0.525 0.564 0.624 0.733

5 0.446 0.474 0.510 0.565 0.669

6 0.410 0.436 0.470 0.521 0.618

7 0.381 0.405 0.438 0.486 0.577

8 0.358 0.381 0.411 0.457 0.543

9 0.339 0.360 0.388 0.432 0.514

10 0.322 0.342 0.368 0.410 0.490

11 0.307 0.326 0.352 0.391 0.468

12 0.295 0.313 0.338 0.375 0.450

13 0.284 0.302 0.325 0.361 0.433

14 0.274 0.292 0.314 0.349 0.418

15 0.266 0.283 0.304 0.338 0.404

16 0.258 0.274 0.295 0.328 0.392

17 0.250 0.266 0.286 0.318 0.381

18 0.244 0.259 0.278 0.309 0.371

19 0.237 0.252 0.272 0.301 0.363

20 0.231 0.246 0.264 0.294 0.356

25 0.210 0.220 0.240 0.270 0.320

30 0.190 0.200 0.220 0.240 0.290

35 0.180 0.190 0.210 0.230 0.270

Over 35

Sample 

size (n )

Level of significance  (  )  for  D

n

07.1

n

14.1

n

22.1

n

36.1

n

63.1
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C.5  P-P plot. 

  In statistics, a P-P plot (probability-probability plot or precent-precent plot) is 

used to see if a given set of data follows some specified distribution. It should be 

approximately linear if the specified distribution is the correct model. 

    A P-P plot compares the theoretical cumulative distribution function,   ,F   

of the specified model with the empirical cumulative distribution function (ECDF) of 

data. The ECDF,   ,nF x  is defined as the proportion of non-missing observations less 

than or equal to ,x  so that   .n i

i
F x

n
   

 

 

 

 

 

 



APPENDIX D 

THE TEST OF DATA  

   

        In Chapter IV, we will use Program R to test for Normality and 

Nonlinearity.   

Program R  

> rm(list=ls()) 

> library(tseries) 

> data <- read.table("Claim_data.txt", header = TRUE) 

> y <- as.ts(data$Y) 

> #Test for Normality 

> shapiro.test(y) 

        Shapiro-Wilk normality test 

data:  y 

W = 0.95441, p-value < 2.2e-16 

 

> #Computes the Augmented Dickey-Fuller test for the null that x has a unit root. 

> adf.test(y) 

        Augmented Dickey-Fuller Test 

data:  y 

Dickey-Fuller = -11.519, Lag order = 10, p-value = 0.01 

alternative hypothesis: stationary 

Warning message: 

In adf.test(y) : p-value smaller than printed p-value 

 

> #ComputestheKwiatkowski-Phillips-Schmidt-Shin (KPSS) test for the null 

hypothesis that x is level or trend stationary. 

> kpss.test(y) 

        KPSS Test for Level Stationarity 

data:  y 

KPSS Level = 0.14183, Truncation lag parameter = 8, p-value = 0.1 

Warning message: 

In kpss.test(y) : p-value greater than printed p-value 
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> #Computes the Phillips-Perron test for the null hypothesis that x has a unit root. 

> pp.test(y) 

        Phillips-Perron Unit Root Test 

data:  y 

Dickey-Fuller Z (alpha) = -1283.4, Truncation lag parameter = 7, p-value= 0.01 

alternative hypothesis: stationary 

Warning message: 

In pp.test(y) : p-value smaller than printed p-value 

 



APPENDIX E 

NEW DISTRIBUTION  

   

    In this section, we present some new models for the claim modeling. An 

infinite mixture distribution is the methods used to obtain new distributions. 

 

E.1  Loss Distributions 

 
Lognormal distribution 

   A random variable X  is said to be Lognormally distributed with parameter 

  and   denoted by  , .X LN    
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Exponential distribution 

               A random variable   is said to be Exponentially distributed with parameter 

  denoted by  .Exp   
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Thus, the pdf of Lognormal-Exponential distribution  ,LN E    is 
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E.2  Laplace-Gamma Distribution 

 
Laplace distribution 

             A random variable X  is said to be Laplace distributed with parameter   and 

   denoted by  , .X LN    
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Gamma distribution 

      A random variable   is said to be Gamma distributed with parameter   and    

denoted by  , .Gam    
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Compare Gamma (pdf) with parameter  
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Thus, the pdf of Laplace-Gamma distribution  , ,La G     is 
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E.3  Exponential – Erlang Distribution 

Exponential distribution 

        A random variable X  is said to be Exponentially distributed with parameter    

denoted by  .X Exp   
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Erlang distribution 

         A random variable   is said to be Erlang distributed with parameter k   and   

denoted by  , .Erlang k   
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Thus, the pdf of Exponential-Erlang distribution  ,E Erlang k   is 
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