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CHAPTER I

INTRODUCTION

Pairs trading is a trading strategies that attempts to be market neutral and

capture the spread between two correlated stocks as they return to the mean price.

It is also known as ”statistical arbitrage”.

The first practical Statistical pair trading is caused by Nunzio Tartaglia,

a quantitative at Morgan Stanley in the mid 1980s. He and a group of scientists

form a team with the goal to develop quantitative arbitrage strategies using state-

of-art statistical techniques. One of the techniques was trading securities in pairs.

This technique concerned with identifying pairs of securities whose price tended to

move together. In 1987, Tartaglia and his group used pairs trading with the great

success. The group disbanded in 1989 after that they worked in various other

trading companies and the idea of pairs trading spread. The technique called

Pairs Trading has since increased in popularity and has become a common trading

strategy used by hedge funds and institutional investors.

If the movement or the future paired stocks prices of the next time step to

trade can be predicted, the risk shall be reduced. Thus the prediction has a part

in this study.

A main goal of this research is to mitigate the risk in trading. Therefore this

study proposed the combined models of the Pairs Trading model and prediction

model.
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1.1 Motivation

From a valuation point of view the general idea for investing in the market-

place is to sell overvalued securities and buy the undervalued ones. However, it is

possible to determine that a security is overvalued or undervalued only if we also

know the true value of the security in absolute terms. But, this is very hard to

do. Pairs trading attempts to resolve this using the idea of relative pricing; that

is, if two securities have similar characteristics, then the prices of both securities

must be more or less the same. Note that the specific price of the security is not

of importance. The price may be wrong. It is only important that the prices of

the two securities be the same. If the prices happen to be different, it could be

that one of the securities is overpriced, the other security is underpriced, or the

mispricing is a combination of both.

Pairs trading involves selling the higher-priced security and buying the

lower-priced security with the idea that the mispricing will correct itself in the

future. The mutual mispricing between the two securities is captured by the no-

tion of spread. The greater the spread, the higher the magnitude of mispricing

and greater the profit potential. A long–short position in the two securities is

constructed such that it has a negligible beta and therefore minimal exposure to

the market. Hence, the returns from the trade are uncorrelated to market returns,

a feature typical of market neutral strategies.

Therefore the key to success in pairs trading lies in the identification of

security pairs.

After using the Pairs Trading, the risk will be reduced. Moreover, if the

paired stocks can be predicted, the risk shall be reduced more. Therefore this

study combined the Pairs Trading with the prediction model to mitigate the risk
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in trading.

1.1.1 Literature Review

An early attempt at Pairs Trading is credited to Nunzio Tartaglia, a quan-

titative analyst at Morgan Stanley in the 1980s. Tartaglia gathered a group of

professionals with the aim of forming a quantitative arbitrage strategy using sta-

tistical techniques. One technique that they implemented was trading pairs of

securities. The procedure distinguishes between pairs of security prices that move

together. The abnormality in the relationship indicates that the pair will be traded

with anticipation that the abnormality will be neutralised in the future. Different

schools of thought offer an alternative that is Mean Reversion. In normal circum-

stance, positive and negative returns on financial assets are temporary because

return reverses to the mean in the long run; the speed of the reversing process can

vary from one day to one year (Hillebrand, 2004). Lo and Mackinlay (1998), Fama

and French (1988), and Poterba and Summers (1988) demonstrated using empirical

evidence that positive market return persists over the short term. However, in the

long term, profit opportunity is reverted. Campbell and Viceira (1999), Wachter

(2002) and Campbell, Chan, and Viceira (2003) confirmed the findings by illus-

trating that Mean Reversion possesses the characteristics of equity index return

over the long term. Additionally, Bessembinder, Coughenour, Seguin, and Smoller

(1995) determined that Mean Reversion that exists in the financial markets uses

empirical evidence from the term structure of future prices. The data sample of

the authors’ study was based on 11 different future markets including financial,

metals, and agriculture markets. The daily settlement price from January 1982 to

December 1991 was used. The disadvantage of the study methodology is that it

can only spot Mean Reversion in the equilibrium condition of the market, and it
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cannot be applied when the market is in disequilibrium. Gatev, Goetzmann, and

Rouwenhorst (2006) conducted an investigation into the risk and return charac-

teristics of Pairs Trading using data from 1962 to 2002. The authors showed that

simple Mean Reversion for a single stock index could not produce clear values.

However, the values can be generated when trading suitably formulated pairs of

stocks. Perlin (2007) proposed a multivariate version of pairs trading, which de-

veloped an artificial pair for a stock based on the information of m assets. This

method assessed the performance of three versions of the multivariate approach for

the Brazilian stock market using data for 57 assets from 2000 to 2006. The exami-

nation of performance was conducted using the calculation of raw returns, excessive

returns, beta, and alpha. Do, Faff, and Hamza (2006) investigated a uniform and

an analytical framework to implement Pairs Trading on arbitrary pairs and sug-

gested an asset pricing-based model to parameterise pairs trading that included

theoretical considerations rather than statistical history. Huck (2010) proposed a

general and flexible framework for the selection of random pairs. Multiple return

forecasts based on bivariate information sets and multi-criteria decision techniques

were implemented.

As an overview on techniques in finance by Kovalerchuk et al. (2000),

the prediction methods can be classified into three categories: numerical mod-

els (ARIMA models, Instance-based learning, neural networks, etc.), rule-based

models (decision tree and DNF learning, naive Bayesian classifier, hidden Markov

model, etc.), and relational data mining (inductive logic programming).One of the

most popular and frequently used stochastic time series models is the Autoregres-

sive Integrated Moving Average (ARIMA) model.The Markov Chain Monte Carlo

(MCMC) methods are particularly attractive for practical finance applications. It

was realized that most Bayesian inference could be done by MCMC, whereas very
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little be done without MCMC. Recently, Artificial Neural Networks (ANNs) have

been attracting increasing attentions in the time series forecasting. Nowadays,the

Support Vector Machine (SVM), a new statistic learning theory, has been receiv-

ing increasing attention for classification and forecasting. The Support Vector

Regression (SVR) is used in forecasting problem.

1.2 Objectives

There are two objectives in this research. The first objective of this research

is to introduce an advanced model of the current co-integration, called, multiclass

Pairs Trading. The other objective is concerned with forecasting of stock data. As

an Autoregressive Integrated Moving Average (ARIMA) model, a Markov Chain

Monte Carlo (MCMC) method, and a Support Vector Regression (SVR) approach

have been successfully used for modelling and predicting financial time series and

they are used in many researches, so these three models are used in this research.

The stock data is predicted by using these three prediction models as follows:

Autoregressive Integrated Moving Average (ARIMA) model, Markov Chain Monte

Carlo (MCMC) method, and support vector regression (SVR) approach.

1.2.1 Forecasting Methods

Normally, there are five fundamental steps in quantitative forecasting: i)

problem definition; ii) grouping information; iii) preparatory analysis; iv) choosing

and fitting models and v) performance measurements.
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1.2.2 A New Novel multiclass Pairs Trading

This newly invented technique provides a new set of risk mitigation by pro-

viding a buffer-trading zone when the paired stocks are changing their directions.

In portfolio trading, it extends an opportunity for a highly correlated and paired

stock to cross-trade with any lowly correlated and paired stock. Thus, the pro-

posed model maximises returns and minimises risk of cointegrated Pairs Trading

stocks. The proposed model employs Mean Reversion and Coefficient of Variance

(CV) algorithm (Premanode, Vonprasert, and Toumazou, 2013), and is now called

‘Mean Reversion and CV’, to segregate and group any paired stock indices under

the cointegration method. The model consists of the following concepts: i) the ap-

plication of Mean Reversion to segregate nonlinear and nonstationary time series

datasets to different local datasets, ii) the grouping of the local datasets segregated

with the coefficient of variance, iii) the calculation of the highest returns of a paired

stock employing the multiclass Pairs Trading algorithm, and then comparing with

the results of a conventional cointegration method, and iv) computing the expected

return of the top ten pairs in the multiclass Pairs Trading that were cross-traded.

The data of this study is the daily price for 127 stocks in the Global Dow, which

included blue chips from leading companies of national reputation. The simula-

tion results show that the cointegrated Pairs Trading using the proposed method

outperforms those of the conventional co-integrated pairs trading outstandingly.

Thus, benefits of the proposed model are to build a new series of risk mitigation

and maximise returns of co-integrated stocks.
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1.2.3 Prediction Models

There are three prediction models, ARIMA, MCMC, and SVR, in this re-

search. The performance of these three models when predicting stock prices move-

ments were shown.

1.3 Organization

This thesis is organized into seven chapters as follows. Chapter I, the moti-

vation behind this research was described, as well as its objectives and organization.

In Chapter II describes the theoretical related to the Pairs Trading. In Chapter III

discusses the development of various forecasting methods. Chapter IV shows and

discusses the time series data that be used in this research. In Chapter V describes

the proposed model, multiclass Pairs Trading, and the cointegration pairs trading.

The performance of this newly proposed model for Pairs Trading was compared

with the performance of the cointegration Pairs Trading, as well as robustness

test. In Chapter VI discusses all three prediction models using in this research ,

i.e., ARIMA, MCMC, and SVR models. The comparison of these three forecast-

ing models are also discussed, as well as robustness test. Chapter VII provides

a highlight and benefit of the proposed model, a combined models of Pair Trade

and a prediction model. It also gives a conclusion on a comparison of the three

prediction models, ARIMA, MCMC, and SVR.

Additionally, in Appendix, programme files and all Figures and Tables that

did not show in the previous chapter present here.



CHAPTER II

PRELIMINARIES AND LITERATURE

REVIEW

Definitions and facts of the concepts on Pairs Trading strategy, mainly

covering topics related to Pairs Trading are documented in this chapter.

Let me explain the main idea behind the pairs trading strategy. The general

algorithm for investing in the marketplace is to sell overvalued securities and buy

the undervalued ones. However, it is possible to determine that a security is

overvalued or undervalued only if we also know the true value of the security

in absolute terms. But, this is very difficult to do. Pairs trading attempts to

resolve this using the idea of relative pricing; that is, if two securities have similar

characteristics, then the prices of both securities must be more or less the same.

2.1 Preliminary Concepts

Time Series Data

A time series is a sequence of observations in chronological order. In the

chapter VI, there are three statistical models for time series. These models are

extensively used in econometric, business forecasting, and many scientific applica-

tions.

A stochastic process is a sequence of random variables and can be viewed

as the ”theoretical” or ”population” analog of a time series—on the other hand, a

time series can be studied a sample from the stochastic process. ”Stochastic” is a
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synonym for random.

Stationary Processes

When a time series process is observed, the oscillations seem random, but

often with the same type of stochastic behavior from one time period to the next.

for instance, returns on stocks or changes in interest rates can be very different

from the previous year, but the mean, standard deviation, and other statistical

properties often are similar from one year to the next. Similar, the demand for

many customer products, such as sunscreen, winter coats, and electricity, has ran-

dom as well as seasonal variation, but each summer is similar to past summers,

each winter to past winter, at least over shorter time periods. Stationary stochastic

processes are probability models for time series with time-invariant behavior.

A process is said to be strictly stationary if all aspects of its behavior are

unchanged by shifts in time (Ruey S. Tsay., 2002). Mathematically, stationary is

defined as the requirement that for every m and n, the distributions of Y1, . . . , Yn

and Y1+m, . . . , Yn+m are the same; that is, the probability distribution of a sequence

of n observations does not depend on their time origin. Strictly stationary is a very

strong assumption, because it requires that ”all aspects” of behavior be constant

in time. A process is weakly stationary if its mean, variance, and covariance are

unchanged by time shifts. More accurately, Y1, Y2, . . . is a weakly stationary process

if

• E(Yi) = µ (a constant) for all i;

• V ar(Yi) = σ2 (a constant) for all i; and

• Corr(Yi, Yj) = ρ(|i− j|) for all i and j for some function ρ(h).

Thus, the mean and the variance do not change with time and the correla-

tion between two observations depends only on the lag, the time distance between
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them.

The function ρ is called the autocorrelation function of the process. The

covariance between Yt and Yt+h is denoted by γ(h) and γ(·) is called autocovariance

function.

As mentioned, many financial time series are not stationary, but often the

changes in them, perhaps after they have been log transformed, are stationary.

Correlation and Autocorrelation Function

The correlation coefficient (Ruey S. Tsay., 2002) between two random vari-

ables X and Y is defined as

ρx,y =
Cov(X,Y )√

V ar(X)V ar(Y )
=

E[(X − µx)(Y − µy)]√
E(X − µx)2E(Y − µy)2

, (2.1)

where µx and µy are the mean of Xand Y , respectively, and it is assumed that the

variances exist. The strength of linear dependence between X and Y is measured

by this coefficient, and it can be shown that −1 ≤ ρx,y ≤ 1 and ρx,y = ρy,x. The

two random variables are uncorrelated if ρx,y = 0.

2.1.1 Cointegration

Cointegration analysis is a technique that is regularly applied in econo-

metrics (Carmona, R.,2014,Ruppert, D. ,2011). In finance it can be used to find

trading strategies based on mean-reversion.

Suppose one could find a stock whose price series was stationary and there-

fore mean-reverting. This would be a wonderful investment opportunity. When-

soever the price was below the mean, one could buy the stock and realize a profit

when the price returned to the mean. In addition, one could realize profits by

selling short whenever the price was above the mean. Sometimes one can find two

or more assets with prices so closely connected that a linear combination of their
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prices is stationary. Then, a portfolio using as portfolio weights the cointegrating

vector, which is the vector of coefficients of this linear combination, will have a

stationary price. Cointegration analysis is a means for finding cointegration vec-

tors. In 1987, Engle and Granger first mentioned cointegration in their work that

won the Nobel Prize 2003 for economics. Conintegration has many application in

macroeconomic analysis since then. Recently, it has performed more and more

noticeable role in funds management and portfolio construction. As the statistical

properties of cointegration, it is an attractive in application for academics and

practitioners.

Two time series, Y1,t and Y2,t, are cointegrated if each is I(1) but if there

exists a λ such that Y1,t − λY2,t is stationary.

Consider a set of economic variables yi,t, i = 1, . . . , p, in long-run equilibrium

when

β1y1,t + β2y2,t + . . .+ βpyp,t = µ+ ϵt (2.2)

where p is number of variables in the cointegration equation, µ is the long-run

equilibrium and ϵt is the cointegration error.

For simplicity, eq. 2.2 can be represented in matrix form as

β′yt = µ+ ϵt (2.3)

where β = (β1, β2, . . . , βp)
′ and yt = (y1,t, y2,t, . . . , yp,t)

′.

The cointegration error is the deviation from the long-run equilibrium and

can be represented by

ϵt = β′yt − µ. (2.4)

The equilibrium is only significant if the residual series or cointegration error ϵt is

stationary.
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As previously, Price series that are cointegrated can be used in statistical

arbitrage. Unlike pure arbitrage, statistical arbitrage means an opportunity where

a profit is only likely, not guaranteed. Pairs trading uses pairs of cointegrated

asset prices and has been a popular statistical arbitrage technique. Pairs trading

requires the trader to find cointegrated pairs of assets, to select from these the pairs

that can be traded profitably after accounting for transaction costs, and finally to

design the trading strategy which includes the buy and sell signals.

2.1.2 Mean Reversion

There are many definitions of mean reversion. Generally, mean reversion

is an asset model, which presents that the asset price tens to fall (rise) after hit

a maximum (minimum) (Premanode, B., 2013). The mean reversion process is a

spread, but the variance does not growing in proportion to the time interval. The

basic mean reversion model is the (arithmetic) Ornstein and Uhlenbeck(1930), a

stochastic process that express the speed of a massive Brownian particle under the

influence of friction. However, this process is stationary, Gaussian and Markovian.

The time series that tend to oscillate about the mean of the series; that is,

they exhibit mean reversion.

Theoretical Considerations Related to Data Classification Using

Mean Reversion and CV

In 2013, Premanode, B., Vonprasert, J., and Toumazou, C. proposed a novel

multiclass algorithm for using the SVM family, known as a ’multiclass kernel’. The

typical curve of stock prices tends to to oscillate about the mean of the series, so

the point of reversal can be used to determine changes in its direction, i.e., from

up to down, and vice versa. Then the datasets are partitioned at the reversal

point. As the standard deviations of a nonstationary datasets are not the same,
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the datasets between each reversal points are measured. The procedure for using

mean reversion and CV are in the following [VII]:

i) Compute the mean µn(t) of random variables Xn(t).

ii) Compute the variance Vn(t) of Xn(t).

iii) After normalizing each Vn(t) using µn(t), Vn(t)
µn(t)

.

iv) In an upward scenario where V1(t) < V2(t), . . . , n, or a downward scenario

where

a) if V2(t)
µ2(t)

< V1(t)
µ1(t)

or V2(t)
µ2(t)

> V1(t)
µ1(t)

, mark the intercept point on the x-axis

and denote it as M1, i.e., the value is Xrn(t) where r = 1, 2, . . . , c and c

is the last class generated by CV or

b) if V2(t)
µ2(t)

= V1(t)
µ1(t)

, ignore to mark any intercept point on the x-axis.

v) Repeat iv) and stop when Vn(t)
µn(t)

becomes the last data point (n). Next, plot

M2, . . . ,Mn.

vi) Compute CV for the data Xrn(t) between the blocks of M1,M2, . . . ,Mn where

n− 1 is the number of partitions/blocks.

The coefficient of variance (CV) that is used in the procedure above is

represented by

CVi =
ρi
µi

(2.5)

where ρi represents standard deviation and µi represents mean.

The original datasets Xrn(t) was classified into different CV classes.
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2.2 Pairs Trading

Pairs trading involves selling the higher-priced security and buying the other

one with the idea that the mispricing will correct itself in the future. Our the-

oretical explanation for the co-movement of security prices stems from arbitrage

pricing theory (APT). According to APT, if two securities have exactly the same

risk factor exposures, then the expected return of the two securities for a given

time frame is the same.

The traders wait for weakness in the correlation, and then go long on the

lower-value while simultaneously going short on the over-value one, closing the

position as the relationship returns to its mean. The strategy’s profit is calculate

from the difference in price change between the two instruments, rather than from

the direction in which each moves. It is possible for the traders to profit during a

variety of market conditions, including periods when the market goes up, down or

sideways, and during periods of either low or high volatility.

2.2.1 The Benefits of Pairs Trading Strategy?

Pairs Trading is a market neutral strategy in its most fundamental form.

The market neutral portfolios are constructed using just a pair of highly corre-

lated instruments such as two stock, exchange-traded funds(ETFs), currencies,

commodities or options, which is consist of a long position in one security and a

short position in the other, in a predetermined ratio. At any given time, the port-

folio is associated with a quantity called the spread. The quoted prices of the two

securities and form a time series are used to calculate this quantity. Pairs Trading

involves putting on position when the spread is substantially away from its mean

value, with the expectation that the spread will revert back. The positions are
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then reversed upon convergence. There are two versions of pairs trading in the

equity markets; namely, statistical arbitrage pairs and risk arbitrage pairs.

Statistical arbitrage pairs trading is based on the idea relative pricing. The

underlying premise in relative pricing is that stocks with similar characteristics

must be priced more or less the same. The spread in this case may be thought

of as the degree of mutual mispricing. The greater the spread, the higher the

magnitude of mispricing and greater the profit potential.

Risk arbitrage pairs occur in the context of a merger between two com-

panies. The terms of the merger agreement establish a strict parity relationship

between the values of the stocks of the two firms involved. The spread in this

case is the magnitude of the deviation from the defined parity relationship. If the

merger between the two companies is deemed a certainty, the the stock prices of

the two firms must satisfy the parity relationship, and the spread between them

will be zero. However, there is usually a certain level of uncertainty on the suc-

cessful completion of merger after the announcement, because of various reasons

like antitrust regulatory issues, proxy battles, and competing bidders, etc. This

uncertainty is reflected in the nonzero value for the spread. Risk arbitrage involves

taking on this uncertainty as risk and capturing the spread value as profits. Thus,

unlike the case of statistical arbitrage pairs, which is based on valuation consid-

eration, risk arbitrage trade is based strictly on a parity relationship between the

prices of the two stocks.

2.2.2 History of Pairs Trading

An early attempt at Pairs Trading is attributed to Wall Street quant Nunzio

Tartaglia, who was at Morgan Stanley in the mid 1980s (Vidyamurthy, G., 2004).

At the time, he gathered a group of mathematicians, physicist, and computer
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scientists. Their mission was to developed by the group were automated to the

point where they could generate trades in a mechanical fashion and, if needed,

execute them seamlessly through automated trading systems. At that time, trading

systems of this kind were considered the cutting edge of technology.

One of the techniques they used for trading involved trading securities in

pairs. The process involved identifying pairs of securities whose prices tended to

move together. Whenever an abnormality in the relationship was noticed, the

pair would be traded with the idea that the abnormality would correct itself.

This came to be known on the street as p̈airs trading.T̈artaglia and his group

employed pairs trading with great success in 1987. The group, however, disbanded

in 1989. Member of the group found themselves in various other trading firms, and

knowledge of the idea of pairs trading gradually spread. Pairs trading has since

increased in popularity and has become a common trading strategy used by hedge

funds and institutional investors.

One of the most popular market neutral strategies is Pairs Trading. The

market neutral portfolios are constructed using two securities, composing of a long

position in one security and a short position in the other, i.e., to sell the overvalued

securities and buy the undervalued ones. At any given time, the portfolio is associ-

ated with a quantity called the spread. Pairs Trading relates putting on positions

when the spread is significantly away from mean value, with the expectation that

the spread will revert back. The positions are then reversed upon convergence.

However, it is possible to determine that a security is overvalued or undervalued

only if we also know the true value of the security in absolute terms, but, this is

very difficult to do. Pairs trading attempts to resolve this using the idea of relative

pricing; that is, if two securities have similar characteristics, then the prices of both

securities must be more or less the same.
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Pairs trading involves selling the higher-priced security and buying the

lower-priced security with the idea that the mispricing will correct itself in the

future.

The strategy involves assuming a long-short position when the spread is

substantially away from the mean. This is done with the expectation that the

mispricing is likely to collect itself. The position is then reversed and profits made

when the spread reverts back.

Layout for Pairs Trading Strategy Design

The steps related are in the following:

1. Identify stock pairs that could potentially be cointegrated.

2. Once the potential pairs are identified, The proposed hypothesis that the

stock pairs are indeed cointegrated based on statistical evidence from histor-

ical data is verified. Determining the cointegration coefficient and examining

the spread time series to ensure that it is stationary and mean reverting are

involved.

3. Then examining the cointegrated pairs to determine the delta.

2.2.3 Trading Strategy

The strategy starts with considering the stock that have historical in the

same pattern of trading. If there is a deviation from the historical mean, this

creates a trading opportunity, that can be exploited. Profit are made when the

price relationship is restored.

For executing the strategy, a trader need a couple of trading rules to follow,

i.e., to clarify when to open or close a portfolio. The general rule will be open a
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position when the Standard Deviation of each price become different significantly

and close it when the ratio returns to the mean.

2.3 Pairs Trading Approaches

There are four main methods to implement pairs trading: the distance

method(Gatev et al, 2006), the stochastic spread method (Elliot,Van Der Hoek,

and Malcolm, 2004), the combined forecasts and multi-criteria decision methods

(MCDM) (Huck, 2010) and the co-integration method(Vidyamurthy, 2004).

The Distance method

In the distance method, the co-movement in a pair is measured by the

distance, or the sum of squared differences between the two normalized price series.

The distance approach purely uses a statistical relationship between a pair of

securities.

The Stochastic spread method

The stochastic spread approach explicitly models the mean reverting of the

spread in a continuous time setting. Pairs trading based on this approach relies

on an assumption that the spread can follow an Ornstein-Uhlenbeck process which

actually is an AR(1) process in a continuous term.

The Combined forecasts and multi-criteria method

The Combined forecasts approach was proposed by Huck (2009, 2010). This

method is based on three phases: forecasting, ranking, and trading. This approach

differs from the others essentially in that it is developed without reference to any

equilibrium model. Huck (2009, 2010) explained that the method provides much

more trading possibilities and could detect the birth of the divergence which the

other approaches cannot consider.

The Cointegration method
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The co-integration method [VII] is an attempt to parameterize Pairs Trad-

ing, by exploring the possibility of co-integration. Co-integration is the phe-

nomenon that two time series that are both integrated of order d, can be linearly

combined to produce a single time series that is integrated of order d − b, b > 0,

the most simple case of which is when d = b = 1.

Generally speaking, the framework is as follows: first, choose two co-

integrated stock price series, then open a long/short position when stocks deviate

from their long term equilibrium and finally, close the position after convergence

or at the end of the trading period.

Consider two shares whose prices are integrated of order 1. P t
i refers to

the price of the ith asset called Ai at time t. If the share prices P t
1 and P t

2 are

co-integrated , co-integration coefficients 1 and β exist so that a co-integration

relationship can be constructed as follows:

P t
1 − βP t

2 = ϵt, (2.6)

where ϵt is a stationary process. When a divergence (based on the standard devia-

tion of ϵt) from the equilibrium state is observed, the trading involves buying one

share 1 and selling β shares 2.

With the concepts on Data Classification Using Mean Reversion and CV,

the author envision to introduce the Mean Reversion and CV as apart of a new

algorithm of Pairs Trading. Before presenting the new algorithm for Pairs Trading,

the next chapter will explain forecasting methods and test statistic, which will be

using for predicting the paired stocks datasets.



CHAPTER III

THE FORECASTING METHODS

One of the description of the word ’forecasting’ is an estimation of a future

trend by inspection and analyzing the known information. Forecasting informs

the decisions made by an organisation, i.e., market trends; economic and social

analysis; capital and financial market; scheduling of product, transport, personnel

and cash; acquiring resources; and determining resource requirements (Makridakis,

Wheelwright, and Hyndman, 1998).

This chapter classifies the methods of forecasting in Section 3.1 and it de-

scribes the basic steps during forecasting tasks in Section 3.2.

The classical forecasting problem may be started as follows. The historical

time series data with the values up to the present value are given. Then, the value

of the next time step value has to be predicted as close as possible.

3.1 Classification of Forecasting Methods

After reviewing many web so far, the general classifications of forecasting

methods are as follows; i) qualitative vs quantitative; ii) naïve; iii) reference class

forecasting, which was developed by Flyvbjerg (2008) to eliminate or decrease bias

when forecasting by concentrating on distribution of information about the past;

iv) time series based on many models, i.e., Kalman filtering, moving average (MA),

exponential smoothing, autoregressive moving average (ARMA), autoregressive in-

tegrated moving average (ARIMA), extrapolation, linear and nonlinear prediction,

trend estimation, etc.; v) casual/econometric; vi) artificial intelligence, e.g., arti-
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ficial neural networks, group methods of data handling, support vector machines,

data mining, machine learning, and pattern recognition.

Nevertheless, the most common categories of forecasting methods described

by Makridakis, Wheelwright, and Hyndman (1998) are the following.

3.1.1 Qualitative

This procedure use expert view and combined experience to unlock the

unknown future where a curious issue is considered. This category may not need

a historical series of data.

3.1.2 Quantitative

The actual numbers, sufficient information and previous experience are used

for the future trend estimation in this procedure. There are two major types, time

series that predict discrete or continuous historical patterns based on periods of

time and explanatory approaches that attempt to correlate two or more variables

that need to be predicted.

3.2 Basics Steps during Forecasting Tasks

The forecasting methods in this research are based on quantitative methods

and the basic steps as follows.

Step 1: Problem definition

The goal is to address how we can improve the accuracy of forecasting non-

linear nonstationary time series data using the prediction models which are

shown in Chapter VI.
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Step 2: Collection information

Nonlinear, nonstationary time series data was used in this study. These

datasets were daily trading data recorded in the Global Dow . They contain

daily stock prices over a 10-year period from 1 August 2002.

Step 3: Preliminary analysis

This step contains general methods for testing for parametric and nonpara-

metric and testing multicolinearity tests.

Step 4: Choosing and fitting models

The comparison of selected models can be achieved using Akaike’s infor-

mation criterion (AIC), which was introduced by Hirotugu (1974). AIC is

not a test of the model in the sense of hypothesis testing; it is a tool for

model selection. The ranking from the poorest to the best model is given

by the lowest AIC. AIC attempts to estimate the best model that explains

data fitted with a minimum of free parameters, otherwise there may be over

fitting.

step 5: Performance measurement

After the completion of step 4, the correct models are selected and finally

they measure the performance using the standard statistical measures and

comparative methods, i.e., µ, σ, MPE, MAPE, MSE, RMSE, AIC, BIC and

Accuracy count.

Where the accuracy count is the upward and downward movements relative

to the mean reversion points in the graphs of outcomes of the simulations compared

with the graph of the original datasets.

Given a dataset, several competing models may be ranked according to their
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Table 3.1 Performance measurements

Standard test statistic Comparative method

Mean (µ) Akaike information criterion (AIC)

Standard deviation (σ) Bayesian Information criterion (BIC)

Variance (σ2) Accuracy count

Mean percentage error (MPE)

Mean absolute percentage error (MAPE)

Mean square error (MSE)

Root Mean square error (RMSE)

Coefficient of determination (R2)

information criterion. The AIC equation is expressed as follows:

AIC = 2K−2ln(L) (3.1)

where K is the number of parameters in the statistical model and L is the maxi-

mized value of the likelihood function for the estimated model. Unless the sample

size (n) is large with respect to the number of estimated parameters (K), use of

AICc is recommended.

AICc = −2ln(L(Θ|y)) + 2K

(
n

n−K − 1

)
(3.2)

Generally, the AICc is used when the ratio of n/K is small (less than 40), based

on K from the global (most complicated) model.

3.3 Cross Validation Methods

As Schneider and Moore’s study in 1997, cross-validation is a model eval-

uation method that splits training and test data, in which the test data is used
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to test the performance after the statistic models train or computed the training

data. The three main methods to approach cross-validation are in the followings.

i) Holdout

The Holdout method is the simplest type of cross-validation. The datasets

is separated into two sets: the training set and the test set. The estimation

model fits the training set only and leaves the test data blind.

ii) K-fold

K-fold was proposed to improve the Holdout method. The K-fold method

divides the whole datasets into k subsets and uses the Holdout method k

times. In each subset, the training data are computed using the model and

tested with the test data.

iii) Leave-one-out

This method applies bootstrap sampling by taking one particle (data unit)

out of the overall training and test datasets whereas the remaining data are

used for reference. The advantage is that the accuracy of the outcome but

this is traded-off by the massive computational power requirements when

handling large input datasets. Moreover, this method was designed only for

model evaluation or in-sample forecasting so it is rather difficult to apply

this method to test forecasting.

With the 5-step of the forecasting tasks, the data are usable to enter to any

process. The next chapter details the data that will be used in the Chapter V and

VI.



CHAPTER IV

THE DATA

Before fitting any model, data testing should be completed. This chapter

introduces the datasets that were composed of 150 daily stocks recorded in the

Global Dow.

The Global Dow is an equal-weighted stock index consisting of the stocks of

150 top companies from around the world as selected by Dow Jones editors based

on the companies’ long history of success and popularity among investors. The

Global Dow is designed to reflect the global stock market and gives preferences to

companies with a global reach.

4.1 Data Preparation

The datasets used in this study are daily stock prices that were composed

of 150 daily stocks recorded in the Global Dow. The datasets contain daily stock

prices over a 10-year period from 1 August 2002 (total of 3961 datasets). Saturday

and Sunday price observations were removed prior to the analysis to avoid any

bias in the results from weekend market closures.

In practice, financial data are time series which are discrete time continuous

state process (Ullrich, 2009).
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4.2 Normality Test for a Nonlinear Distribution

Since the stock prices and other financial information are normally nonlin-

ear, the following tests are used to ensure that the variables specified in Section

4.1 are not linear, which affected in a good model selection that can be used for

prediction in the Chapter VI.

4.2.1 Anderson Darling Test

The Anderson Darling test is a statistical test of whether a given sam-

ple of data is drawn from a specific distribution, e.g., the normal distribution.

This test makes use of the specific distribution to calculate critical values. The

Anderson-Darling statistic can be used to compare how well a data set fits different

distributions.

The two hypotheses for the Anderson-Darling test for the normal distribu-

tion are given below:

• H0: The data follows the normal distribution

• H1: The data do not follow the normal distribution

The null hypothesis is that the data are normally distributed; the alternative

hypothesis is that the data are non-normal.

The Anderson-Darling statistic is given by the following formula:

AD = −n− 1

n

n∑
i=1

(2i− 1)[lnF (Xi) + ln(1− F (Xn−i+1))], (4.1)

where n is sample size, F (X) is cumulative distribution function for the specified

distribution and i is the ith sample when the data is sorted in rising order.
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4.2.2 Kolmogorov-Smirnov Test

In 1974, Stephens stated that the Kolmogorov–Smirnov test (K-S test) is

a nonparametric test of the equality of continuous, one-dimensional probability

distributions, which can be used to compare a sample with a reference probability

distribution (one-sample K–S test), or to compare two samples (two-sample K–S

test). The K-S statistic quantifies the distance between the empirical distribution

function of the sample and the cumulative distribution function of the reference

distribution, or between the empirical distribution functions of two samples. This

test can be modified to serve as a goodness of fit test.

The two hypotheses for the Kolmogorov–Smirnov test for the normal dis-

tribution are given below:

• H0: The data follows the normal distribution

• H1: The data do not follow the normal distribution

The null hypothesis is that the sample are normally distributed or that the

sample are drawn from the same distribution (in the two-sample case).

In this case , samples are standardized and compared with a standard nor-

mal distribution by setting the mean and variance of the reference distribution

equal to the sample estimates. The empirical distribution Fn for n is indepen-

dently and identically distributed (i.i.d.) with observations Xi, is defined as

Fn(x) =
1

n

n∑
i=1

IXi
≤ x, (4.2)

where IXi
is the indicator function, which is equal to 1 if Xi ≤ x and equal to 0

otherwise. The K-S static for a given c.d.f. F(x) is

Dx = sup
x

|Fn(x)− F (x)|, (4.3)
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where supx is the supremum of the set of distances. By Glivenko–Cantelli theorem,

if the sample comes from the distribution F (x), then Dn converges to 0 almost

certainly (Wellner, 1981). However, as many researches, the K-S test is less power-

ful for testing normality than the Anderson-Darling test (Stephen, 1974) and that

it requires a relatively large number of data points to reject the null hypothesis

appropriately.

4.2.3 Pearson’s chi-squared Test

Two random variables x and y are independent if the probability distribution

of one variable is not affected by the presence of another. Assume fij is the

observed frequency count of events belonging to both the ith category of x and the

jth category of y. Moreover, assume eij to be the corresponding expected count

if x and y are independent. The null hypothesis of the independence assumption

is rejected if the p-value of the following Chi-squared test statistic is less than a

given significance level (Moor, 1986).

χ2 =
n∑
i,j

(fij − eij)
2

eij
. (4.4)

4.3 Unit Root Test for a Nonlinear Distribution

Financial time series such as stock prices sometimes can be described as a

random walk process which is a non-stationary process with a unit root. There

are several ways to test whether the series is stationary or non-stationary with a

unit root. The well-know one is Dickey-Fuller (DF) test (Dickey and Fuller, 1979,

Fuller, 1976). It test the null hypothesis that a series does contain a unit root, i.e.,

it is non-stationary, against the alternative of stationary. There are other tests,

such as CRDW test (Sargan and Bhargava, 1983) based on the usual Durbin-
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Watson statistic; and the non-parametric tests developed by Phillips and Perron

based on the Z-test (Phillips and Perron, 1988), which involves transforming test

statistic to eliminate autocorrelation in the model. As the DF test’s simplicity and

its more general nature, it is more popular than others.

4.3.1 Augmented Dickey-Fuller Test

The Augment Dickey-Fuller test (ADF), an augmented version of the

Dickey–Fuller test for a larger and more complicated set of time series models,

is a test for a unit root in a time series sample. The ADF is a negative number

and when it is more negative, there is a good reason to reject the hypothesis that

there is a unit root at some level of confidence. The testing procedure for the ADF

test is the same as that for the Dickey–Fuller test when it is applied to the model

(Dickey and Fuller, 1981), which is given by

∆yt = α + βi + γyt−1 + δ1∆yt−1 + . . .+ δp−1∆yt−p+1 + εt, (4.5)

where α is a constant, β is the coefficient on a time trend and p is the lag order of

the autoregressive process. Specifying the constraints α = 0 and β = 0 corresponds

to modelling a random walk whereas using the constraint β = 0 corresponds to

modelling a random walk with drift. The ADF conception with lags of order p

allows for higher-order autoregressive processes. When the test is applied, the lag

length p has to be defined and this can be fitted using AIC. In short, AIC is a tool

for model selection and also for selecting the lagged length of eq. 4.5. Given a

dataset, several competing models are ranked by their information criterion. The

AIC equation is defined as follows:

AIC = 2k − 2ln(L), (4.6)
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where k is the number of parameters in the statistical model and L is the maximized

value of the likelihood function for the estimated model. The unit root test is then

fulfilled under the null hypothesis γ = 0 against the alternative hypothesis of γ < 0.

A value for the test static can be calculated using the equation as follows:

DFτ =
γ̂

SE(γ̂)
, (4.7)

where SE is the standard error, equaling S.D√
n

. Accepting the null hypothesis implies

the presence of a unit root where the test statistic is less than (a larger negative)

the critical value.

Table 4.1 presents the blue chip stocks of companies with a national reputa-

tion for reliability, quality, and the capability to operate profitably under extreme

market conditions. The stocks are among the most widely and actively traded

ones. The datasets contain daily stock prices over a 10-year period from 1 August

2002, i.e., 3,961 days. Saturday and Sunday price observations were removed prior

to the analysis to avoid any bias in the results from weekend market closures.

In conclusion, 134 datasets of 150 datasets collected from Global Dow were

use in this study.The new novel Pairs Trading will be presented, in the Next Chap-

ter. The datasets will be used in the next two Chapter, Chapter V and VI.
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Table 4.1 The 134 listed companies in Global Dow index in the year 2013
Company Countries BB Ticker

1 3M Co. U.S. MMM US Equity

2 ABB Ltd. Switzerland ABB SS Equity

3 Abbott Laboratories U.S. ABT US Equity

4 Alcoa Inc. U.S. AA US Equity

5 Allianz SE Germany ALV GR Equity

6 Amazon.com Inc. U.S. AMZN US Equity

7 America Movil S.A.B. de C.V. Series L Mexico AMXL MM Equity

8 American Express Co. U.S. AXP US Equity

9 Amgen Inc. U.S. AMGN US Equity

10 Anglo American PLC U.K. AAL LN Equity

11 Anheuser-Busch InBev N.V. Belgium ABI BB Equity

12 Apple Inc. U.S. AAPL US Equity

13 ArcelorMittal France ARCELOR LX Equity

14 Assicurazioni Generali S.p.A. Italy G IM Equity

15 Astrazeneca PLC U.K. U.K. AZN LN Equity

16 AT&T Inc. U.S. T US Equity

17 BAE Systems PLC U.K. BA/ LN Equity

18 Banco Bilbao Vizcaya Argentaria S.A. Spain BBVA SM Equity

19 Banco Santander S.A. Spain SAN SM Equity

20 Bank of America Corp. U.S. BAC US Equity

21 Bank of New York Mellon Corp. U.S. BK US Equity

22 BASF SE Germany BAS GR Equity

23 Baxter International Inc. U.S. BAX US Equity

24 Bharti Airtel Ltd. India BHARTI IN Equity

25 BHP Billiton Ltd. Australia BHP AU Equity

26 BNP Paribas S.A. France BNP FP Equity

27 Boeing Co. U.S. BA US Equity

28 BP PLC U.K. BP/ LN Equity

29 Bridgestone Corp. Japan 5108 JP Equity

30 Canon Inc. Japan 7751 JT Equity

31 Carnival Corp. U.S. CCL US Equity

32 Carrefour S.A. France CA FP Equity

33 Caterpillar Inc. U.S. CAT US Equity

34 Chevron Corp. U.S. CVX US Equity

35 China Construction Bank Corp. China 601939 CH Equity

36 China Mobile Ltd. Hong Kong 941 HK Equity

37 China Petroleum & Chemical Corp. China 600028 CH Equity
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Company Countries BB Ticker

38 China Unicom (Hong Kong) Ltd. Hong Kong 762 HK Equity

39 Cisco Systems Inc. U.S. CSCO US Equity

40 CLP Holdings Ltd. Hong Kong 2 HK Equity

41 Coca-Cola Co. U.S. KO US Equity

42 Colgate-Palmolive Co. U.S. CL US Equity

43 Compagnie de Saint-Gobain S.A. France SGO FP Equity

44 Companhia Energetica de Minas Gerais-CEMIG Pr Brazil CMIG4 BZ Equity

45 ConocoPhillips U.S. COP US Equity

46 Credit Suisse Group Switzerland CSGN VX Equity

47 Daimler AG Germany DAI GR Equity

48 Deere & Co. U.S. DE US Equity

49 Deutsche Bank AG Germany DBK GR Equity

50 E.I. DuPont de Nemours & Co. U.S. DD US Equity

51 E.ON AG Germany EOAN GR Equity

52 eBay Inc. U.S. EBAY US Equity

53 EDP-Energias de Portugal S.A. Portugal EDP PL Equity

54 Esprit Holdings Ltd. Hong Kong 330 HK Equity

55 Express Scripts Inc. U.S. ESRX US Equity

56 Exxon Mobil Corp. U.S. XOM US Equity

57 FedEx Corp. U.S. FDX US Equity

58 First Solar Inc. U.S. FSLR US Equity

59 Freeport-McMoRan Copper & Gold Inc. U.S. FCX US Equity

60 Gazprom OAO ADS Russia GAZPROM RU Equity

61 GDF Suez S.A. France GSZ FP Equity

62 General Electric Co. U.S. GE US Equity

63 Gilead Sciences Inc. U.S. GILD US Equity

64 GlaxoSmithKline PLC U.K. GSK US Equity

65 Goldman Sachs Group Inc. U.S. GS US Equity

66 Google Inc. Cl A U.S. GOOG US Equity

67 Hewlett-Packard Co. U.S. HPQ US Equity

68 Home Depot Inc. U.S. HD US Equity

69 Honda Motor Co. Ltd. Japan 7267 JP Equity

70 Honeywell International Inc. U.S. HON US Equity

71 HSBC Holdings PLC (UK Reg) U.K. HSBA LN Equity

72 Hutchison Whampoa Ltd. Hong Kong 13 HK Equity

73 Industrial & Commercial Bank of China Ltd. China 601398 CH Equity

74 Infosys Technologies Ltd. India INFO IN Equity

75 Intel Corp. U.S. INTC US Equity
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Company Countries BB Ticker

76 International Business Machines Corp. U.S. IBM US Equity

77 Johnson & Johnson U.S. JNJ US Equity

78 JPMorgan Chase & Co. U.S. JPM US Equity

79 Komatsu Ltd. Japan 6301 JP Equity

80 Kraft Foods Inc. Cl A U.S. KRFT US Equity

81 L.M. Ericsson Telephone Co. Series B Sweden ERICB SS Equity

82 LG Electronics Inc. South Korea 066570 KS Equity

83 LVMH Moet Hennessy Louis Vuitton France MC FP Equity

84 McDonald’s Corp. U.S. MCD US Equity

85 Medtronic Inc. U.S. MDT US Equity

86 Merck & Co. Inc. U.S. MRK US Equity

87 Microsoft Corp. U.S. MSFT US Equity

88 Mitsubishi Corp. Japan 8058 JP Equity

89 Mitsubishi UFJ Financial Group Inc. Japan 8306 JP Equity

90 Mitsui & Co. Ltd. Japan 8031 JP Equity

91 Mizuho Financial Group Inc. Japan 8411 JP Equity

92 Monsanto Co. U.S. MON US Equity

93 NASDAQ OMX Group Inc. U.S. NDAQ US Equity

94 National Australia Bank Ltd. Australia NAB AU Equity

95 National Grid PLC U.K. NG/ LN Equity

96 Nestle S.A. Switzerland NESN VX Equity

97 News Corp. Cl A U.S. NWSA US Equity

98 Nike Inc. Cl B U.S. NKE US Equity

99 Nintendo Co. Ltd. Japan 7974 JP Equity

100 Nippon Steel Corp. Japan 5401 JP Equity

101 Nokia Corp. Finland NOK1V FH Equity

102 Novartis AG Switzerland 4856075Z MC Equity

103 Panasonic Corp. Japan 6752 JP Equity

104 PetroChina Co. Ltd. China 601857 CH Equity

105 Petroleo Brasileiro S/A Pref Brazil PETR4 BZ Equity

106 Pfizer Inc. U.S. PFE US Equity

107 Philip Morris International Inc. U.S. PM US Equity

108 Potash Corp. of Saskatchewan Inc. Canada POT CN Equity

109 Procter & Gamble Co. U.S. PG US Equity

110 Reliance Industries Ltd. India RIL IN Equity

111 Renewable Energy Corp. ASA Norway REC NO Equity

112 Research in Motion Ltd. Canada BB CN Equity

113 Rio Tinto PLC U.K. RIO LN Equity
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Company Countries BB Ticker

114 Roche Holding AG Part. Cert. Switzerland RO SW Equity

115 Royal Bank of Canada Canada RY CN Equity

116 Royal Dutch Shell PLC A U.K. RDSA LN Equity

117 Samsung Electronics Co. Ltd. South Korea 005930 KS Equity

118 SAP AG Germany SAP GR Equity

119 Schlumberger Ltd. U.S. SLB US Equity

120 Seven & I Holdings Co. Ltd. Japan 3382 JP Equity

121 Siemens AG Germany SIE GR Equity

122 Societe Generale S.A. France GLE FP Equity

123 Sony Corp. Japan 6758 JP Equity

124 Southwest Airlines Co. U.S. LUV US Equity

125 SunPower Corp. Cl A U.S. SPWR US Equity

126 Suntech Power Holdings Co. Ltd. ADS China SUPOHZ CH Equity

127 Taiwan Semiconductor Manufacturing Co. Ltd. Taiwan 2330 TT Equity

128 Takeda Pharmaceutical Co. Ltd. Japan 4502 JP Equity

129 Tata Steel Ltd. India TATA IN Equity

130 Telefonica S.A. Spain TEF SM Equity

131 Tesco PLC U.K. TSCO LN Equity

132 Time Warner Inc. U.S. TWX US Equity

133 Toshiba Corp. Japan 6502 JP Equity

134 Total S.A. France FP FP Equity

135 Toyota Motor Corp. Japan 7203 JP Equity

136 Travelers Cos. Inc. U.S. TRV US Equity

137 UBS AG Switzerland UBSN VX Equity

138 UniCredit S.p.A. Italy UCG IM Equity

139 United Parcel Service Inc. Cl B U.S. UPS US Equity

140 United Technologies Corp. U.S. UTX US Equity

141 Vale S.A. Pref A Brazil VALE5 BZ Equity

142 Veolia Environnement S.A. France VIE FP Equity

143 Verizon Communications Inc. U.S. VZ US Equity

144 Vestas Wind Systems A/S Denmark VWS DC Equity

145 Vinci S.A. France DG FP Equity

146 VISA Inc. Cl A U.S. V US Equity

147 Vodafone Group PLC U.K. VOD LN Equity

148 Wal-Mart Stores Inc. U.S. WMT US Equity

149 Walt Disney Co. U.S. DIS US Equity

150 Wells Fargo & Co. U.S. WFC US Equity



CHAPTER V

THE PAIRS TRADING MODEL

As in Chapter II, the Pairs Trading was described. Pairs trading involves

selling the higher-priced security and buying the lower-priced security with the idea

that the mispricing will correct itself in the future. This newly invented technique

provides a new set of risk mitigation by providing a buffer-trading zone when

the paired stocks are changing their directions. In portfolio trading, it extends

an opportunity for a highly correlated and paired stock to cross-trade with any

lowly correlated and paired stock. Thus, the proposed model maximises returns

and minimises risk of cointegrated Pairs Trading stocks. The proposed model

employs Mean Reversion and Coefficient of Variance (CV) algorithm (Premanode,

Vonprasert, and Toumazou, 2013). In this Chapter are proposed a new novel

algorithm for Pairs Trading.

5.1 The proposed multi-class Pairs Trading Model

The methodology of this research based on Pairs Trading using Mean Re-

version and CV. The Mean Reversion technique analyses any dataset whose dis-

tributions move from upward to downward direction and vice versa. Following,

we introduce classification technique using coefficient of variance to grouping the

stock indexes (variable datasets, and now called datasets), followed by the Mean

Reversion Technique, which is the fundamental framework for creating multi-class

in the algorithm.

In theory, the conventional co-integrated Pairs Trading method identifies
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two stocks that move in time series together and calculate a correlation between

them. The model begins by normalising the datasets using the mean (µ) and

standard deviation (σ) followed to co-integration them with Pearson’s correlation

coefficient(ρ), and it represents by

ρxi,yi =
cov(xi, yi)

σxi
, σyi

=
E[(xi − µxi

)(yi − µyi)]

σxi
σyi

(5.1)

where cov(xi, yi) represents the covariance of xi, and yi, when i = 1, 2, ..., n.

Following, we select the paired stocks in order from high to low.

Next, this research introduces the Mean Reversion and CV (Premanode,

Vonprasert and Toumazou, 2013) to analyse and group the datasets. The Mean

Reversion algorithm is expressed as follows:

i) Compute the mean µi(t) of xi(t), where i = 1, 2, ..., n.

ii) Compute the variance Vi(t) of xi(t).

iii) By normalising each Vi(t) using µi(t), we obtain Vi(t)
µi(t)

.

iv) Using the datasets xi(t) from the upward scenario,we calculate and plot

V1(t) > V2(t) > . . . > Vi−1(t) > Vi(t).

v) The same process is applied to the downward scenario where V1(t) < V2(t) <

. . . < Vi−1(t) < Vi(t).

vi) If Vi(t)
µi(t)

= Vi−1(t)
µi−1(t)

, ignore the calculation, but move the plot one step forward.

vii) Repeat the steps in items iv) to vi) and stop when i = n.

viii) We obtain a curve of xi(t) that marks points of local maxima and minima.

In the next process, we introduce the coefficient of variance (CV) to compute

the datasets, at which is represented by
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CVi =
ρi
µi

(5.2)

where ρi represents standard deviation and µi represents mean. Conse-

quent to applying the Mean Reversion and CV, we derived a number of groups of

datasets and termed them to CV. Each CV may then have different normal distri-

bution, reflecting different values for the paired stock indices. Following to plotting

standard deviation, we divide the datasets into six classes in time series; namely,

CV1, CV2, CV3, CV4, CV5 and CV6. we then plot the mean of CV1 to CV6 between

the mean of CV3 and CV4. Hence, in the normal distribution, standard deviation of

the CV1 should be significantly deviated greater than the CV2. Applying the same

rationale, standard deviation of the CV6 is significantly deviated greater than CV5.

In each CV, we calculate the return Pairs Trading (Perline, 2007) using Eq.(5.3).

The co-integrated Pairs Trading formula is expresses as follows:

RCO =
T∑
t=1

n∑
i=1

Ri(t) · IL&S
i (t) ·Wi +

(
T∑
t=1

n∑
i=1

Tci(t) ·
[
ln

(
1− C

1 + C

)])
(5.3)

where Ri(t) represents the real return of asset i at time t, calculated by

ln
(

Pi(t)
Pi(t−1)

)
; IL&S

i (t) represents the dummy variable with a value of 1 if a Long

position is created for the asset i, a value of -1 if a short position is created,

and 0 otherwise; Tci(t) represents the dummy variable that takes a value of 1

if a transaction is made for the asset i at time t and 0 otherwise; C represents

the transaction cost per operation (by percentage); T represents the number of

observations on the whole trading period, and

Wi(t) =
1∑n

i=1|IL&S
i (t)|

for

 1 if trade exist;

0 if no trade.
(5.4)
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where Wi(t) is the weighting variable that controls for portfolio construction at

time t, assuming that the same weight is applied to each transaction.

5.2 Benefits of the multi-class Pairs Trading

Since the co-integrated Pairs Trading is used to buying a stock, commodity

or currency under the expectation that the asset will rise or fall in value from time

to time. As a result, the long position is exercised when the curve of a paired

stock is at high peak (maxima). Whereas, the short position is exercised when the

paired stock is moving at the low peak (minima). With the proposed multiclass

Pairs Trading, there are two extra benefits, which are follows:

i) By applying the proposed model to the historical trading datasets, we then

found that a number of paired stocks could distribute to any CV, depending

on there values of Mean Reversion and CV. An example is given that the

highest correlated paired stock may locate in CV1. Once the trade begins

within any CV, we can exercise either long or short positions in time series

until the existing CV starts to change the new CV. In the situation where the

stock starts to diverge, we then analyse the new CV and compile it with the

historical CV datasets. Hence, the trading can resume. Since the stocks are

traded within the same CV from time to time, the returns are maximised.

Without using the proposed model, we will never know when the correlation

of any paired indices is about to diverge.

ii) With respect to portfolio trading, there is a possibility that any stock indices

in the different correlation can be cross-paired and cross-traded among them,

provide that they have shared the same CV. Thus, it creates additional

trading opportunities inasmuch as risk is minimised.
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5.3 Results and Discussion for Pairs Trading Part

5.3.1 Generating the Mean Regression and CV

Referring to Bloomberg terminal, Table 4.1 summarises the 134 datasets

of Global Dow indices in the year 2013. Following, Fig. 5.1 presents simulation

procedure of the proposed multi-class Pairs Trading model using Mean Reversion

and CV, and it is expressed in order as follows:

i) Assign a matrix xki(t) where k represents the number of columns, k = 134

and i represents the number of rows, i = 3213

ii) By normalising the matrix of xki(t), we obtain Aki(t)

iii) Calculate Aki(t) for k = 134 and i = 3213

iv) By selecting the highest return of Aki(t) using the Person’s correlation coef-

ficient, we obtain xp1(t) and xp2(t) in time series, see results in Table 5.1

v) Use the Mean Reversion algorithm in 5.1 to compute each point of reverse of

xp1(t) and xp2(t) in time series. Then mark the reversed local maxima and

minima of xp1(t) and xp2(t) in time series

vi) Compute each local xp1(t) and xp2(t) in time series with the coefficient of

variance (CV)

vii) Thus, the local xp1(t) and xp2(t) in time series are grouped into different

CV1, CV2, . . . , CVn, and termed to xp1(tCV ) and xp2(tCV )

viii) Calculate expected returns of the local xp1(t), xp2(t), xp1(tCV ), and xp2(tCV )

ix Next, we compare the expected returns of xp1(t) and xp2(t) (the original

datasets) with the returns of xp1(tCV ) and xp2(tCV ) (the datasets, which are
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applied the Mean Reversion and CV). The probabilities for calculating the

expected returns of xp1(t), xp2(t), xp1(tCV ) and xp2(tCV ) using Markov chain

are listed in Table 5.4 and 5.5.

x) For robustness test, use the same procedures listed in item v) and item vi)

calculating the expected returns of another ten cross-pairing that listed in

table ??. Then compare the expected returns of ten cross-pairing stocks of

xp1(t) and xp2(t) (the original datasets) with the xp1(tCV ) and xp2(tCV ), the

datasets which have applied the Mean Reversion and CV, are also shown in

Table 5.8.

Figure 5.1 Procedure of the multiclass Pairs Trading model

The workflow of the multi-class Pairs Trading demonstrated in Figure 5.1



41

is started by normalising all the datasets xki(t), pairing xki(t) with Pearson’s co-

efficient. Then, we select the pair that has the highest value of CV and term

to Aki(t), and de-normalising the paired of Aki(t). Finally, we obtain xp1(t) and

xp2(t). The next step is to calculate the multi-class Pairs Trading using Scenario II.

The results of Scenario II are then subject to compare with Scenario I which is the

conventional cointegration of the paired trading. In Scenario I, we calculate the

expected returns of co-integrated xp1(t) and xp2(t), see Table 5.8, using probability

in Table 5.4 and 5.5 whereas we process Scenario II with the following:

i) compute mean and variance of xp1(t) and xp2(t)

ii) construct point of reversal using items i) to viii) under Section 5.1

iii) group xp1(t) and xp2(t) and use Equation 5.2 to compute Mean Reversion and

CV, then termed to xp1(tCV ) and xp2(tCV ). Next, we calculate probabilities

and the expected returns of xp1(tCV ) and xp2(tCV ), resulted in Table 5.5 and

Table 5.8, respectively.

5.3.2 Results in pairing the normalised datasets

Consequent to the procedural workflow presented in Figure 5.1, all of the

datasets are normalised. We introduce the Pearson’s correlation coefficient to

measure the degree of correlation among the paired stock indices. Because there

are 127 datasets, we cross-map each stock price and neglect redundant pairings.

Because of pairing, there are 8911 pairs. We have found that Mitsubishi

UFJ Financial Group Inc. (the X8306JP) and Mizuho Financial Group Inc. (the

X8411JP) stock share the highest correlation coefficient of 0.990423021. Figure 5.2

presents two graphs, the X8306JP and the X8411JP. To ease a presentation, the

x-axis represents a datasets, whereas the y-axis represents the normalised values
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Table 5.1 Top ten pairs from the Global Dow Index that share a high correlation

coefficient value

Rank Stock #1 Stock #2 Correlation

Coefficient

1 X8306JP X8411JP 0.990423021

2 GLEFP UCGIM 0.979811683

3 BBVASM UCGIM 0.979511643

4 DBKGR GLEFP 0.977928533

5 GLEFP UBSNVX 0.971305147

6 BBVASM GLEFP 0.971011881

7 IBMUS NKEUS 0.970135778

8 DBKGR UCGIM 0.969867105

9 AMZNUS IBMUS 0.968048722

10 BBVASM DBKGR 0.965423526

ranging from 3.00 to −1.00. This implies that the pairs of the X8306JP and the

X8411JP performed close to the mean comparing to the standard deviation at the

scale of ±3. We present the ranking of top ten pairs out of 8001 pairs and their

correlation coefficients in Table 5.1.

5.3.3 Results in using Mean Reversion and CV

Referring to Table 5.1, we select the highest correlation coefficient pair,

the X8306JP and the X8411JP and simulate those datasets separately with Mean

Reversion and CV. They are outlined in the items i) to viii) in section ??. At this

stage, the datasets have been partitioned into different CV values in time series.
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Figure 5.2 Performance of the highest correlation coefficient, X8306JP and

X8411JP

Figure 5.3 The X8306JP showing the different CVs comparing the original

datasets
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Figure 5.3 and 5.4 show the performance of Mean Reversion and CV by

plotting six different CV classes, and two original datasets, X8306JP and X8411JP.

Of those six CV classes, the x-axis represents the entire datasets in time series;

whereas, the y1-axis represents the stock values of X8306JP and X8411JP, and the

CV values use the scale of the y2-axis.

5.3.4 Risk mitigation using Mean Reversion and CV

There are six CV classes showing the minimum to maximum values of

datasets in each class. Apparently, it is illustrated in Table 5.2 and 5.3. With

the remark, the current the X8306JP and the X8411JP datasets have no longer

formatted in time series.

For risk mitigation of any stock trading, we utilise contents in Table 5.2 and

5.3 starting from the following:

i) Collect historical minimum and maximum records/units of Pairs Trading for

a particular period, e.g., 500 daily records/units of the X8306JP and the

X8411JP

Figure 5.4 The X8411JP showing the different CVs comparing the original

datasets
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ii) Match the present observed prices of the X8306JP and the X8411JP with

one of the CV classes

a) In case of non-volatility, the future price will behave and situate in the

same CV class, use Long and Short positions for trading. It is because

we assume that the future stock prices of the X8306JP and the X8411JP

will probability fit into the existing CV class

b) If the new observed prices are highly volatile and run out of the situated

CV class, stop trading

c) If the new observed prices are equal to the previous prices, continue to

trade by using the last position

iii) Update Table 5.2 and 5.3 and going item i)

iv) Check the new volatility with variance changes

v) To continue trading, loop the procedures in item ii) to item iv)

Table 5.2 Detailed classification of the stock X8306JP, prices in US dollars

X8306JP

Class CV Range Units Mean Variance

1 0.028041352 320-355.9368 208 337.774 89.712

2 0.122561653 355.9369-550.3055 1244 434.7178 2838.7

3 0.104160587 550.3056-813.2123 264 630.7197 4316

4 0.036502849 813.2124-939.0795 246 900.6911 1080.9

5 0.17382795 939.0796-1512.9 942 1176 41789

6 0.059390989 1512.9001-1930 309 1637.3 9455.6

In the Table 5.2, the CV class 2 of the X8306JP the highest number of

points. The highest variance of the X8306JP is in the CV class 5.
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Table 5.3 Detailed classification of the stock X8411JP, prices in US dollars

X8411JP

Class CV Range Units Mean Variance

1 0.038475671 98-112.2439 129 106.6977 16.8532

2 0.203966775 112.2440-224.8609 1376 156.4949 1018.9

3 0.216937345 224.8610-404.7557 233 274.0043 3533.3

4 0.053668296 404.7558-488.5782 285 448.2702 578.7824

5 0.212921968 488.5783-877.5724 831 654.9639 19448

6 0.034902598 877.5724-1020 359 934.5515 1064

In the Table 5.3, the CV class 2 of the X8411JP the highest number of

points. The highest variance of the X8411JP is in the CV class 5. It is similar to

the results of the X8306JP.

5.3.5 Proof concept of the Mean reversion and CV

This section is to proof that in the cointegrated Pairs Trading using the

proposed Mean Reversion and CV model can outperform the conventional cointe-

grated Pairs Trading (without using the Mean Reversion and CV).

Initially, we calculate probabilities of the X8306JP and the X8411JP assum-

ing that the chance of the future stock prices moving either upward or downward

is equal, at which both probabilities are 0.5. On contrary, the probabilities of the

X8306JP and X8411JP using the Mean Reversion and CV are better than those

of the conventional cointegrated Pairs Trading as displayed in Table 5.5.

In terms of comparison, the expected returns of the model using Mean Re-

version and CV shown in Table 5.6 are better than the conventional Pairs Trading,

at which listed in Table 5.4 and 5.5.
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Additionally, we conduct robustness test by using other pairs of prices from

the Global Dow indices which have shared a high correlation coefficient values listed

in Table 5.8. The author found that the expected returns using the conventional

Pairs Trading, are less than those of Mean Reversion and CV. Thus, we conclude

that the proposed model is robust.

Calculation of Probabilities of the paired stocks, the X8306JP and the

X8411JP

Using Equation 5.2 and Equation 5.4 to calculate of the expected returns of

the cointegrated conventional Pairs Trading, and the cointegrated Pairs Trading

using Mean Reversion and CV, then subtituting the value of some elements as

follows

• IL&S
i (t) is 1 if a long position is created for individual return, a value of -1 if

a short position is created, and 0 otherwise;

• t represents the dummy variable that takes the value of 1 if a transaction is

made for individuals at time t and 0 otherwise;

• C represents the transaction cost per operation and set to 0.25%;

• T represents the number of observations with 3961 data points;

• Wi(t) is weight at position 1.

Each expected returns of the co-integrated xp1(t) and xp2(t) are calculated

by using the value of the present observed variables multiplies with the probability

of the lag and repeats infinitely in time series. The expected returns of any co-

integrated Pairs Trading can be expressed by



48

ERCO =
n∑

i=1

Ri
CO(t)p

i
CO(t) (5.5)

where Ri
CO(t) is the return of cointegrated xp1(t) and xp2(t) in scenario i, piCO(t)

is the probability for the return Ri
CO(t) in scenario i, and i counts the number of

scenarios. However, we omit to calculate the first two observations after the stocks

reverted. It is because we have taken into consideration that some stock can be

highly volatile and immediately reverted. Additionally, the returns of co-integrated

xp1(tCV ) and xp2(tCV ) can be termed to Ri
CO(tCV ); and the results are listed in

Table ??. The expected returns of Ri
CO(tCV ) are inevitably similar to those of

the expected returns of Ri
CO(t). We calculate probability for expected returns of

the conventional cointegrated by assuming that each stock in the same pair can

revert to the co-integrated line and vice versa with a probability of 0.5. The total

probability reversion of co-integrated pair is calculated to 0.5 multiplies with 0.5,

equalling to 0.25. Hence, the total probability of non-reverted pairs moving along

time series is 1.00 minus 0.25, equalling 0.75 as illustrated in Table 5.4.

The difference is that the calculation of the expected returns of Ri
CO(t) used

the probability listed in Table 5.5 rather than the fixed of probability employed in

the calculation of Ri
CO(t), in which is given to 0.75. It is because we assume that

any stock prices during the trade can equally move up and down. We introduce

Markov chain to calculate probabilities of the conventional co-integrated Pairs

Trading the used Mean Reversion and CV. In the Markov chain’s process, the

value of the present observation is multiplied with the probability of the lag, and

it repeats an infinite number of times. Table 5.5 indicates, the X8306JP and the

X8411JP are ranging from 0.865853659 to 0.986334405. Whereas the probability

of the conventional co-integrated Pairs Trading (without Mean Reversion and CV)

remains to 0.75 as illustrated in Table 5.4.
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Table 5.4 Calculations of the probabilities of conventional co-integrated Pairs

Trading (without Mean Reversion and CV)

Index Probabilities of conventional

cointegrated Pairs Trading

(without Mean Reversion and CV)

X8306JP 0.75

GLEFP 0.75

Table 5.5 Calculations of the probabilities of cointegrated Pairs Trading using

Mean Reversion and CV
Index Probabilities of cointegrated Pairs Trading Mean Reversion and CV

Class CV1 CV2 CV3 CV4 CV5 CV6

X8306JP 0.9663 0.9863 0.9316 0.8659 0.9565 0.9482

X8411JP 0.9457 0.9855 0.9013 0.9193 0.9700 0.9666

The Table 5.4 shows that the total probability of non-reverted pairs moving

along time series is 0.75 for both the X8306JP and the X8411JP.

The Table 5.5 shows that the probability of non-reverted pairs moving along

time series of the conventional co-integrated Pairs Trading the used Mean Rever-

sion and CV are ranging from 0.8659 to 0.9863 and from 0.9013 to 0.9855, for the

X8306JP and the X8411JP, respectively.

Calculation of expected returns

This section consists of two parts, at which the first part represents a cal-

culation for expected returns of co-integrated xp1(t) and xp2(t), Ri
CO(t), and the

second part represents calculation of expected returns of co-integrated xp1(tCV )

and xp2(tCV ), Ri
CO(tCV ).
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The Table 5.6 shows that the block number 78 is the highest data points,

389 points, i.e., the trader can trade for 389 days.

The different expected returns in each block of the X8306JP and the

X8411JP are calculated by using the returns of the X8306JP and the X8411JP

multiply by the same probability value of 0.75. As a result, the total expected

return of both co-integrated the X8306JP and the X8411JP to US$ 2461.915799.

The expected returns of co-integrated xp1(tCV ) and xp2(tCV ), Ri
CO(tCV )

using Mean Reversion and CV consist of 98 blocks. In each block the number of

data points is ranging from 3 to 389, depending on the distribution of CV classes,

e.g., in block 1 there are 11 data points at the ranking of 78th to 88th. We omit

to calculate the blocks that have the number of data less than 3. It is because

the stocks may be highly volatile from the first two observations when the stocks

have been reverted. The probabilities of both the X8306JP and the X8411JP

are based on Markov chain, in which represent the smallest value of 0.865853659

and the highest value of 0.986334405. Apparently, the returns of co-integrated the

X8306JP and the X8411JP, and the expected returns of co-integrated the X8306JP

and the X8411JP using Mean Reversion and CV are demonstrated, given the total

expected returns of both equals US$ 2781.944909. However, the allocation of each

CV class undertakes values of observations. Thus, during the calculation process;

each Ri
CO(tCV ) has never been mixed up.

Comparison of the performance of the conventional cointegration (without

Mean Reversion and CV) with the cointegration using Mean Reversion and CV can

be demonstrated by looking at values of the expected returns of both cases. The

expected returns of the conventional cointegration and the proposed model using

Mean Reversion and CV are US$ 2351.84 and US$ 2003.77, respectively. AS a

result, the returns of co-integration using Mean Reversion and CV are higher than
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the conventional cointegration (without Mean Reversion and CV). Therefore, we

conclude that the proposed cointegrated pairs trading using Mean Reversion and

CV outperforms the conventional cointegrated pairs trading model. Therefore, the

net premium in 10-year trading with the cointegrated pairs trading using Mean

Reversion and CV, which calculated the difference of both cases, yields to US$

320.0291104, equalling to 12.9991899%.

5.3.6 Results of nonlinear and non-stationary test

The testing results shows that distributions of the X8306JP and the

X8411JP were not neither in normal nor stationary since the p-value is less than

0.05%, see Table 5.7.

The Table shows that the X8306JP and the X8411JP were non-stationary.

Robustness test

To compute the expected returns of the cross-paired trading, we assign the

contents in Table 5.1, which are the top ten pairs that have been characterised

for the highest correlation as input. Then, we use the same techniques that have

been used to calculate the expected returns of X8306JP and X8411JP for comput-

ing the expected returns of the top ten pairs. The results are listed in Table 5.8

and Table 5.9. Whereas, Table 5.8 represents the expected returns of the conven-

tional co-integrated pairs trading (without Mean Reversion and CV), and Table

5.9 represents the expected returns of the co-integrated pairs trading using Mean

Reversion and CV.
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Table 5.7 Normality and Unit root test for X8306JP and X8411JP

X8306JP (actual) Statistics p-value

Normality test

hline Anderson-Darling 146.1787 < 2.2e-16

Lilliefors (Kolmogorov-Smirnov) 0.1783 < 2.2e-16

Pearson chi-square 4190.571 < 2.2e-16

Unit root test

Augmented Dickey-Fuller -0.9075 < 2.2e-16

X8411JP (actual) Statistics p-value

Normality test

Anderson-Darling 186.466 < 2.2e-16

Lilliefors (Kolmogorov-Smirnov) 0.2138 < 2.2e-16

Pearson chi-square 7188.54 < 2.2e-16

Unit root test

Augmented Dickey-Fuller -0.7736 0.00015
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The results of computing the expected returns of the cointegrated Pairs

Trading using Mean Reversion and CV are shown in Table 5.9. Apparently, the

average expected returns of the cointegrated Pairs Trading using Mean Reversion

and CV are US$ 253631.306 and US$ 2536.31306, respectively. The expected re-

turns of the co-integrated Pairs Trading using Mean Reversion and CV outperforms

those of the conventional cointegrated Pairs Trading (without Mean Reversion and

CV), see Table 5.8. It is proven that the benefit of co-integrated Pairs Trading us-

ing Mean Reversion and CV, for those top ten cross-paired stocks with the 10-year

investment, is US$ 27838.05873, equaling to 13.54%.



CHAPTER VI

THE PREDICTION MODELS

Pairs trading and its theoretical considerations were introduced in Chapter

II. The risk in trading stock can be reduced by using Pairs trading method.

In the previous chapter, Chapter V, a new novel pairs trading model is proposed.

Moreover, the simulation results show that the cointegrated Pairs Trading using the

proposed method outperforms those of the conventional co-integrated pairs trading

outstandingly. Thus, benefits of the proposed model are to build a new series of

risk mitigation and maximise returns of co-integrated stocks. If the movement or

the future price of the next time step to trade can be predicted, the risk shall be

inevitably reduced. Therefore, this study is to combine the Prediction model with

the Pairs Trading.

This chapter describes about prediction model which use in this research,

i.e., Autoregressive Integrated Moving Average (ARIMA) model, Markov Chain

Monte Carlo (MCMC) methods, and Support Vector Machine (SVM). There are

also a framework of each forecasting model, in which included theoretical consider-

ations of the prediction models and including the simulation results and discussions

further in the Chapter.

6.1 Introduction to Prediction Models

Kovalerchuk et al. described an overview on techniques in finance, the pre-

diction methods can be classified into three categories: numerical models (ARIMA

models, Instance-based learning, neural networks, etc.), rule-based models (deci-
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sion tree and DNF learning, naive Bayesian classifier, hidden Markov model, etc.),

and relational data mining (inductive logic programming).

One of the most popular and frequently used stochastic time series models

is the Autoregressive Integrated Moving Average (ARIMA) model. The Markov

Chain Monte Carlo (MCMC) methods are particularly attractive for practical fi-

nance applications. It was realized that most Bayesian inference could be done by

MCMC, whereas very little be done without MCMC.

Recently, Artificial Neural Networks (ANNs) have been attracting increas-

ing attentions in the time series forecasting. Nowadays,the Support Vector Ma-

chine (SVM), a new statistic learning theory, has been receiving increasing atten-

tion for classification and forecasting. The Support Vector Regression (SVR) is

used in forecasting problem.

Hence, there are three models used in this study as follows: Autoregressive

Integrated Moving Average (ARIMA) model, Markov Chain Monte Carlo (MCMC)

method, and Support Vector Regression (SVR) approach. This section describes

the prediction methods as mentioned above.

6.2 Autoregressive Integrated Moving Average (ARIMA)

Model

Autoregressive Integrated Moving Average (ARIMA) models intend to de-

scribe the current behaviour of variables in terms of linear relationships with their

past values. An ARIMA model can be decomposed in two parts. First, it has

an Integrated (I) component (d), which represents the amount of differencing to

be performed on the series to make it stationary. The second component of an

ARIMA consists of an ARMA model for the series rendered stationary through
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differentiation. The ARMA component is further decomposed into AR and MA

components.

6.2.1 Autoregressive (AR) Model

In economics and signal processing, an autoregressive (AR) model

(Borchers, B., 2002, Ayodele Ariyo Adebiyi, Aderemi Oluyinka Adewumi, and

Charles Korede Ayo., 2014) is a random process that is usually used for modelling

and prediction in various types of natural phenomena. AR models are a group of

linear prediction formulas that attempt to predict the outputs of a system based

on previous outputs. The autoregressive (AR) component captures the correlation

between the current value of the time series and some of its past values. For ex-

ample, AR(1) means that the current observation is correlated with its immediate

past value at time t− 1. The main assumption of the AR model is yt linear com-

binations of the previous observed values up to a defined maximum lag (p), which

is expressed as

yt = ϕ1yt−1 + ϕ2yt−2 + . . .+ ϕpyt−p + εt (6.1)

where yt is the dependent variable value at the moment t, ϕt is a constant and εt

is the error term which is i.i.d. N(0, σ2).

6.2.2 Moving Average (MA) Model

The Moving Average (MA) component represents the duration of the influ-

ence of a random (unexplained) shock. For example, MA(1) means that a shock

on the value of the series at time t is correlated with the shock at t− 1. The main

assumption of the MA component is that yt is a random error term plus some
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linear combination of the previous random error terms up to a defined maximum

lag (q), which is expressed as

yt = εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q (6.2)

where θt are constants.

6.2.3 Autoregressive Moving Average (ARMA) Model

When combining AR and MA, the lags of the different series appearing in

the forecast equation are AR(p) and MA(q), where p and q are independent. To

analyse a time series and fit the ARMA(p, q) model, we require all of observations

to be i.i.d. N(0, σ2) that is with a zero mean normal distribution. The expression

is given by (Brockwell and Davis, 2002)

yt = ϕ1yt−1 + . . .+ ϕpyt−p + εt + θ1εt−1 + . . .+ θqεt−q. (6.3)

Rearrange (6.3) to yield

yt − ϕ1yt−1 − . . .− ϕpyt−p = εt + θ1εt−1 + . . .+ θqεt−q (6.4)

and assign the back-shift operator B (where Byt = yt−1, B
2yt = yt−2, andsoon) to

(6.4), before rearranging it to obtain

(1− ϕ1B − . . .− ϕpB
p)yt = (1 + θ1B + . . .+ θqB

q)εt, (6.5)

which can be re-written as

ϕp(B)∆dyt = θq(B)εt or ϕp(B)yt = θq(B).εt (6.6)

where ϕp(B) and θq(B) are AR and MA operators, respectively.
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6.2.4 Autoregressive Integrated Moving Average

(ARIMA) Model

In the event that the process being observed is non-stationary, the differ-

ences of the series are computed using linear combinations until a stationary time

series is found so the ARMA is superseded and referred to as ARIMA(p, d, q) where

the I of the differences of the series to be transformed is stationary, and d is the

order of difference required to produce a stationary process, a stochastic process

whose joint probability distribution does not change when shifted in time, which

is normally 0, 1, or 2 depending on its lagged correlation. Finally, ARIMA(p, d, q)

is written as

ϕp(B)∆dyt = θq(B)εt (6.7)

where ∆d is a difference operator.

Automatic Selection of an ARIMA Model

An automatic method for selecting an ARIMA model is very useful. An

automatically selected model should not be accepted blindly as usual, but it has

a reason to first select model with something chosen quickly and by objective

criterion.

The R function auto.arima can select all three parameters, p, d, and q, for

an ARIMA model. The differencing parameter d is selected using the KPSS test.

If the null hypothesis of stationarity is accepted when the KPSS is applied to the

original time series, then d = 0. Otherwise, the series is differenced until the KPSS

accepts the null hypothesis. After that, p and q are selected using either AIC or

BIC.
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6.2.5 Simulation and Results of the ARIMA model

The datasets from Chapter IV were used to simulate the ARIMA model.

The highest correlation paired stocks, the X8306JP and the X8411JP, were used

to simulate the results in this section and also in the next two sections as well.

These two datasets were then simulated by R programming scripts for ARIMA

model. For out-of-sample forecasting, we selected the last 30% of the 3213 sets to

be used as a reference. Next, we tested outcomes of the simulations with ARIMA

model using the original datasets as input data. We then plotted them against the

original test datasets (used as a reference), as shown in the graphs in Fig. 6.1 and

6.4.

The graphs are shown in Fig. 6.1 and 6.4 where the x-axis represents 963

test data points in the time series and the y-axis represents stock prices in US

dollars. At which shows the deviations between the simulated graph of the ARIMA

model compared with the original datasets. The two graphs are coincidentally in

a line where the x-axis represents the data points in the time series and the y-

axis represents the US dollars stock prices. The next step was to measure the

performance of the ARIMA model using a variety of loss estimators, i.e., MAE,

MAPE, MSE, RMSE, R2, AIC, BIC, and Accuracy count (up-down (%)). Table 6.1

and 6.2 show that the MAPE of the X8306JP and the X8411JP are 53.05702 and

66.02224, respectively. It is noticeable that the measurement results of MAPE was

too high. That is the simulation results of the AR model which is a part of ARIMA

and found that it persisted to the lags, diverting from the original datasets. Having

counted the up and down movements along the x-axis, the percentage success of the

model reached 72.63267%. This is because of the MA model adjusted the trends

of the local datasets from time to time. Once the trends of the average either

increased or decreased, the movements of the curves agreed with the changes.
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Table 6.1 Simulation results using the ARIMA model to forecast the original

X8306JP datasets

Error estimation ratio

70-30 80-20 90-10

MAE 0.53057 0.214543 0.132489

MAPE 53.05702 21.45433 13.24885

MSE 53551.47 9418.297 8083.087

RMSE 62.94142 69.70751 39.13242

R2 NA NA NA

AIC 19793.32 22309.71 24784.1

BIC NA NA NA

Up-Down(%) 68.88658 69.0625 70.21944

After comprehensively analysing the results shown in Fig. 6.1 and 6.4 and Table

6.1 and 6.2, we conclude that the ARIMA model was not suitable to use with highly

volatile and strictly non-stationary datasets. This was because the ARIMA model

required the AR term to be stationary; and it cannot equip with any independent

variables; thus, there are no extra independent variables other than the lag of its

own to adjusting the model while predicting the 2ndAR, the 3rdAR, and so on.

Thus, the error from the previous prediction carried over and become an input for

the next prediction round, giving the accumulation of the error in the long term

prediction.

The measurement of the performance of the ARIMA model for these two

datasets with 80-20 and 90-10 ratio shown in Table 6.1 and 6.2. The plots of 80-20

and 90-10 ratio shown in the graphs in Fig. 6.2, 6.5, 6.3 and 6.6, respectively.
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Table 6.2 Simulation results using the ARIMA model to forecast the original

X8411JP datasets

Error estimation ratio

70-30 80-20 90-10

MAE 0.6602224 0.2924394 0.122757

MAPE 66.02224 29.24394 12.2757

MSE 9559.542 1879.355 680.8471

RMSE 29.94024 37.89151 22.14481

R2 NA NA NA

AIC 16980.82 19078.74 21129.47

BIC NA NA NA

Up-Down(%) 72.63267 73.75 73.66771

6.3 Markov Chain Monte Carlo (MCMC) model

Markov Chain Monte Carlo (MCMC) methods are particularly attractive

for practical finance applications for many reasons. Firstly, MCMC is a unified

estimation procedure which simultaneously estimates both, parameters and state

variables. Secondly, MCMC methods account for estimation and model risk. Fi-

nally, MCMC is just a conditional simulation methodology, and therefore avoids

any maximization and long unconditional state simulation.

6.3.1 Background Related to the MCMC model

In the 1950s, Monte Carlo simulations were first used in the physics lit-

erature. In 1970, Hasting studied the optimality of these algorithms and the

Metropolis-Hastings algorithm is introduced (Landauskas, M., 2011).
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MCMC (Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park., 2011)

is essentially Monte Carlo integration using Markov chains. In brief, Monte Carlo

integration draws samples from required distribution and then provides sample

averages for approximate expectations. MCMC draws these samples by running a

smartly constructed Markov chain. There are many ways to construct these chains,

including the Gibbs sampler, which are special cases of the general framework of

Metropolis et al. and Hastings.

Let’s begin with the concept of a Markov process. Consider a stochastic

process {Xt}, where each Xt assumes a value in the space Θ. The process {Xt}

is a Markov process if it has the property that, given the value of Xt, the values

of Xh, h > t, do not depend on the values Xs, s < t. In other words, {Xt} is a

Markov process if its conditional distribution function satisfies

P (Xh|Xs, s ≤ t) = P (Xh|Xt), h > t. (6.8)

If {Xt} is a discrete-time stochastic process, then the prior property becomes

P (Xh|Xt, Xt−1, . . .) = P (Xh|Xt), h > t. (6.9)

Let A be a subset of Θ. The function

Pt(θ, h, A) = P (Xh ∈ A|Xt = θ), h > t (6.10)

is called the transition probability function of Markov process.

Consider an inference problem with parameter vector θ and data X, where

θ ∈ Θ. To make inference, we need to know the distribution P (θ|X). The idea of

Markov chain simulation is to simulate a Markov process on Θ, which converges

to a stationary distribution that is P (θ|X).

The solution to Markov chain simulation is to create a Markov process whose

stationary transition distribution is a specified P (θ|X) and run the simulation
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sufficiently long so that the distribution of the current values of the process is

close enough to the stationary transition distribution. So, for a given P (θ|X),

many Markov chains with desired property can be constructed. The methods

that use Markov chain simulation to obtain the distribution P (θ|X) is referred as

Markov Chain Monte Carlo (MCMC) methods.

Note that the notation π(θ) is used for the target distribution of interest.

In most cases the target will be the posterior distribution for the mode unknowns,

π(θ) = p(θ|y) by given the observations y.

6.3.2 Monte Carlo Modelling of Stock Prices

The process of a stock price is considered as a Brownian motion. Thus its

value satisfies the equation:

dS = µSdt+ σSdz. (6.11)

Consider a financial mean with log normally distributed returns. The random walk

of price of such a financial mean is modeled according this formula (P. Wilmott,

2007):

S(t+∆t) = S(t)exp((δ − 1

2
σ2)∆t+ σ

√
∆tZ) (6.12)

Here random value Z ∼ N(0, 1) follows standard normal distribution, ∆ is annual

risk free return and σ is annual standard deviation of the logarithm of a stock

price.

6.3.3 Markov chain Monte Carlo (MCMC)

Suppose it is needed to generate xi ∼ π(x). When xi ∼ π(x) is difficult to

sample from, MCMC sampling technique could be performed. In fact MCMC is
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a set of techniques used for this purpose. Th e main idea of it is to construct a

Markov chain {Xi}∞i=0, such that

lim
i→∞

P (Xi = x) = π(x). (6.13)

A Markov chain is predefined by an initial state P (X0 = x0) = g(x0) and

the transition kernel P (y|x) = P (Xi+1 = y|Xi = x). Stationary distribution

π(x) = limi→∞ f(xi) is unique if the chain is ergodic. Then:

π(y) =
∑
x∈Ω

π(x)P (y|x), ∀y ∈ Ω. (6.14)

Latter equality could be written as a set of (n− 1) linear equations:

π(x2) = π(x1)P (x2|x1) + π(x2)P (x2|x2) + . . .+ π(xn)P (x2|xn)

. . .

π(xn) = π(x1)P (xn|x1) + π(x2)P (xn|x2) + . . .+ π(xn)P (xn|xn)

(6.15)

here n := |Ω|. There are a total number of (n−1) equations and n(n−1) transition

probabilities P (xj|xk), k = 1, n, j = 1, n− 1. Thus there exist an infinite number

of transition kernels P (y|x), such that the stationary distribution of the Markov

chain is π(x).

Metropolis-Hastings algorithm (J.S.Daqpunar, 2007) is One of the tech-

niques used for constructing such a transition kernel. Its idea is to choose any

other transition kernel Q(y|x). Then there exists a probability that Q(y|x) is

equal to P (y|x).

P (y|x) = Q(y|x)α(y|x), y ̸= x, α(y|x) ∈ [0, 1]. (6.16)

Considering the detailed balance condition of a time-homogeneous Markov chain

yields:

π(x)Q(y|x)α(y|x) = π(y)Q(x|y)α(x|y),∀x ̸= y. (6.17)
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The general solution for eq. 6.17 is α(y|x) = r(x, y)π(y)Q(x|y). It is necessary

to have a higher acceptance ration when sampling random numbers, therefor by

adjusting r(x, y) and considering higher acceptance ration while sampling random

numbers (V.Prokaj, 2009) it is shown that:

α(y|x) = min

(
1,

π(y)Q(x|y)
π(x)Q(y|x)

)
. (6.18)

6.3.4 Nonparametric Probability density estimation

Consider a sample consisting of random independent and identically dis-

tributed values Xi. Kernel density estimate is chosen for evaluate the probability

density of Xi.

f̂(x)− 1

n

n∑
i=1

Kh(x−Xi), Kh(x) =
1

h
K
(x
h

)
, (6.19)

here K(·) is the kernel function, h is its width.


∫ +∞
−∞ K(x)dx = 1,

K(x) ≥ 0.
⇒


∫ +∞
−∞ f̂(x)dx = 1,

f̂(x) ≥ 0.
(6.20)

Below are some kernel functions that are frequently used. The triangular

kernel function is useful if the data has sharp edged distribution. Gaussian kernel

makes the estimate’s PDF plot very smooth.

K(x) =

 1− |x|, |x| ≤ 1,

0, |x| > 1.
(tringular), (6.21)

K(x) =


3
4
(1− x2), |x| ≤ 1,

0, |x| > 1.
(Y apanichnikov), (6.22)

K(x) =
1√
2π

e
x2

2 (Gauss). (6.23)
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Basically, such probability density estimation is about assigning kernel den-

sity to each Xi and including weighted sum of all other assignations. The con-

tribution of any other Xj to the probability value at Xi is smaller if Xi − Xj is

bigger.

In MCMC simulation a sequence of values which are not independent but

instead follow a stochastic process called a Markov chain is produced. The simu-

lation use the algorithm to ensure that the chain will take values in the domain

of the unknown θ and that its limiting distribution will be the target distribution

π(θ). This means that there is a method of sampling values from the posterior

distribution and therefore of making Monte Carlo inferences about θ in the form

of sample averages and by means of histograms and kernel density estimates.

The MCMC algorithm produces a chain of values in which each value can

depend on the previous value in the sequence.

6.3.5 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm (Hastings, 1970; Metropolis et

al., 1953) is currently the most general algorithm for MCMC simulation. Its basic

form is easy to explain and implement and it has several useful generalizations and

special cases for different purposes.

The basis of MCMC with the MH algorithm is to reject the original sam-

ples if they are outside the unit circle of the target and replace them by another

computed sample.

With the MCMC algorithm, a chain of values θ0, θ1, . . . , θN is generated in

such a way that it can be used as a sample of the target density π(θ).

A general Metropolis-Hastings algorithm is in the following:

1. Start from an initial value θ0, and select a proposal distribution q.
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2. At each step where the current value is θi−1, propose a candidate for the new

parameter θ∗ from the distribution q(θi−1, ·).

3. If the proposed value θ∗ is better than the previous value θi−1 in the sense

that

π(θ∗)q(θ∗, θ) > π(θi−1)q(θ, θ∗),

it is accepted unconditionally.

4. If it is not better in the above sense, θ∗ is accepted as the new value with a

probability α given by

α(θ, θ∗) = min{1, π(θ
∗)q(θ∗, θ)

π(θ)q(θ, θ∗)
}.

5. If θ∗ is not accepted, then the chain stays at the current value, that is, we

set θi = θi−1.

6. Repeat the simulation from step (2) until enough values have been generated.

As the MH algorithm is currently the most general algorithm for MCMC

method, the research will simply use this algorithm.

There are many advantages for MCMC. Firstly, it is flexible. So you can

adjust your models as much as you want and it still productively fit them as

well. Secondly, it is Reliable, that is it will never hang on a local optimum. It

is great in pulling out uncertainties of all kinds. Although the MCMC algorithm

is complicated, the inference based on the posterior distributions is very easy and

intuitive.

6.3.6 Simulation and Results of the MCMC Model

Similar to Section 6.2, the same datasets, the X8306JP and the X8411JP,

were simulated by R programming scripts. Next, we tested the outcomes of the



74

simulations, which were nonlinear and nonstationary, and plotted them against

the original test datasets (used as a reference), as shown in Fig. 6.1 and 6.4.

The graphs are shown in Fig. 6.1 and 6.4 where the x-axis represents 963

test data points in the time series and the y-axis represents stock prices in US

dollars. At which shows the deviations between the simulated graph of the ARIMA

model compared with the original datasets. The two graphs are coincidentally in

a line where the x-axis represents the data points in the time series and the y-

axis represents the US dollars stock prices. The next step was to measure the

performance of the ARIMA model using a variety of loss estimators, i.e., MAE,

MAPE, MSE, RMSE, R2, AIC, BIC, and Accuracy count (up-down (%)). Table

6.1 and 6.2 show that the MAPE of X8306JP and X8411JP are 9.048187 and

12.72942, respectively. Furthermore, accuracy count of the MCMC model for the

X8306JP and the X8411JP were better than the ARIMA model, i.e., 88.44953%

and 88.59375%, respectively.

The measurement of the performance of the MCMC model for these two

datasets with 80-20 and 90-10 ratio shown in Table 6.3 and 6.4. The plots of 80-20

and 90-10 ratio shown in the graphs in Fig. 6.2, 6.5, 6.3 and 6.6, respectively.

Table 6.1 and 6.2 show that the MAPE of X8306JP and X8411JP are

9.048187 and 12.72942, respectively. Furthermore, accuracy count of the MCMC

model for X8306JP and X8411JP were better than the ARIMA model, i.e.,

88.44953% and 88.59375%, respectively.

As the Table 6.1 and 6.2 and the simulation results of the MCMC model

are better than that of the ARIMA model.
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Table 6.3 Simulation results using the MCMC model to forecast the original

X8306JP datasets

Error estimation ratio

70-30 80-20 90-10

MAE 0.09048187 0.09137966 0.09172327

MAPE 9.048187 9.137966 9.172327

MSE 2056.663 2469.144 3919.649

RMSE 45.35045 49.69048 62.6071

R2 0.9741764 0.9789096 0.9815841

AIC 25292.8 28606.79 31923.19

BIC 25309.96 28624.35 31941.1

Up-Down(%) 88.44953 88.59375 88.71473
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Table 6.4 Simulation results using the MCMC model to forecast the original

X8411JP datasets

Error estimation ratio

70-30 80-20 90-10

MAE 0.1272942 0.1514191 0.1677348

MAPE 12.72942 15.14191 16.77348

MSE 716.5013 1004.316 1787.101

RMSE 26.76754 31.69095 42.27412

R2 0.9741764 0.9789096 0.9815841

AIC 23504.61 26531.87 29551.3

BIC 23521.77 26549.43 29569.21

Up-Down(%) 88.44953 88.59375 88.71473
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6.4 Support Vector Regression (SVR) Model

Support Vector Machine (SVM) (Premanode, B., 2013, Premanode, B.,

Vonprasert, J., and Toumazou, C., 2013) is a well-known approach in the machine

learning community. It is usually implemented for a classification problem in a

supervised learning framework. In case of regression problem, SVM can also be

used to predict or explain the values taken by a continuous dependent variable.

6.4.1 Machine Learning

Machine learning is a field in computer science that related from the study

of pattern recognition and computational learning theory. It handles the issue of

programming systems to learn automatically and improve with experience. For

constructing a learning algorithm, complex pattern is recognized and intelligent

decisions based on the data are made. The possible decisions are too complex to

compute by hand. To solve this problem the machine learning such as artificial

neural networks (ANN) and support vector machines (SVM) were developed. Ma-

chine learning algorithms commonly use probability theory, logic, optimization,

search, statistics, linear algebra and control theory.

In 1946, the first computer system (ENIAC) was developed. This machine

was operated manually, i.e., a human would make connections between the parts

of the machine to perform computations.

Machine learning algorithm can be organized as follows.

i) Supervised learning creates a function that maps input to desired outputs.

A training set of examples with the actual targets is provided and based on

this training set; the algorithm generates correctly responses for all possible

inputs. Supervised learning is the most famous method.
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ii) Unsupervised learning does not give correct responses, then this algorithm

attempts to recognize similarities between the inputs.

iii) Reinforcement learning lies between supervised and unsupervised learning.

The algorithm is inform when the answer id wrong and there is no expanding

pattern to improve performance, then the algorithm carry on repeating the

loop until it can find the correct answer.

iv) Evolutionary learning is to learn from biological evolution and adapt to im-

prove the survival rate when the circumstances change.

In 1963, Fisher devise the first algorithm for pattern recognition. Later in

1963, the generalized portrait algorithm, the template for support vector machines

(SVMs), was introduced by Vapnik and Lerner. Currently, the performance of

SVMs is better than other machine learning methods.

Regularly, SVMs consists of a set of related supervised learning methods.

The algorithm indicates a hyperplane that characterizes a functional margin, which

holds all possible data points in a finite dimensional nonlinear space. A kernel func-

tion k(x, x′), defines the cross-products separated by the hyperplane. Each data

point shows its vector potential depending on its distance from the hyperplane.

6.4.2 Theoretical Consideration Related to the Support

Vector Regression (SVR) Model

SVM can also be used as a regression method, maintaining all the main

features that characterize the algorithm (maximal margin). The Support Vector

Regression (SVR) uses the same principles as the SVM for classification, with only

a few minor differences. First of all, because output is a real number it becomes

very difficult to predict the information at hand, which has infinite possibilities.
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In the case of regression, a margin of tolerance (epsilon) is set in approximation to

the SVM which would have already requested from the problem. But besides this

fact, there is also a more complicated reason, the algorithm is more complicated

therefore to be taken in consideration. However, the main idea is always the same:

to minimize error, individualizing the hyperplane which maximizes the margin,

keeping in mind that part of the error is tolerated. The support vector algorithm

is a nonlinear generalization developed by Vapnik and Lerner in the sixties.

Suppose we have a training data set (x1, y1), . . . , (xℓ, yℓ) ⊂ X ×R, for each

xi ∈ X (where X denotes the space of the input patterns, e.g. X = Rd) and

corresponding value yi ∈ R for i = 1, . . . , ℓ. In ϵ-SV regression [Vapnik, 1995],

our goal is to find a function f(x) that has at most ϵ deviation from the actually

obtained targets yi for all the training data, and at the same time is as flat as

possible.

The estimating function f is taken in the form:

f(x) = (w · Φ(x)) + b (6.24)

where w ∈ Rm, b ∈ R is the bias, and Φ is a non-linear function from Rn to a high

dimensional space Rm (m > n). The objective is to find the values w and b such

that the values of f(x) can be determined by minimizing the risk:

Rreg(f) = C
n∑

i=1

Lϵ(yi, f(xi)) +
1

2
∥w∥2. (6.25)

where Lϵ is the extension of ϵ-insensitive loss function originally proposed by Vap-

nik and defined as:

Lϵ(y, z) =


|y − z| − ϵ, |y − z| ≥ ϵ

0, otherwise
(6.26)

Introducing the slack variables ζi and ζ∗i the above problem may be reformulated

as
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Minimize
x

C

[
ℓ∑

i=1

(ζi + ζ∗i )

]
+

1

2
∥w∥2

subject to

yi − w · Φ(xi)− b ≤ ϵ+ ζi

w · Φ(xi) + b− yi ≤ ϵ+ ζ∗i

ζi ≥ 0

ζ∗i ≥ 0.

(6.27)

for i = 1, 2, . . . , ℓ and where C above is a user specified constant.

Solution of the above problem (6.27) using primal dual method leads to the

following dual problem:

Determine the Lagrange multipliers {αi}ii=1 and {α∗
i }ii=1 that maximize the

objective function.

Q(αi, α
∗
i ) =

ℓ∑
i=1

yi(αi −α∗
i )− ϵ

ℓ∑
i=1

(αi −α∗
i )−

1

2

ℓ∑
i=1

ℓ∑
j=1

(αi −α∗
i )(αj −α∗

j )K(xi, xj)

(6.28)

subjected to the following conditions:

(1)
ℓ∑

i=1

(αi − α∗
i ) = 0

(2)


0 ≤ αi ≤ C

0 ≤ α∗
i ≤ C

for i = 1, 2, . . . , ℓ, where C is a user specified constant and K : X ×X → R is the

Mercer Kernel defined by:

K(x, z) = Φ(x) · Φ(z) (6.29)
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This solution of the Primal yields

w =
ℓ∑

i=1

(αi − α∗
i )Φ(xi) (6.30)

Then b is calculated using Karush-Kuhn-Tucker (KKT) conditions

αi(ε+ ζi − yiw · Φ(xi) + b) = 0,

α∗
i (ε+ ζi + yiw · Φ(xi)− b) = 0,

(C − αi)ζi = 0,

(C − α∗
i )ζ

∗
i = 0 (6.31)

for i = 1, 2, . . . , ℓ.

Since αi, α
∗
i = 0 and ζ∗i = 0 for α∗

i ∈ (0, C), then b can be computed as

follows:

b = yi − w · Φ(xi)− ε for 0 < αi < C (6.32)

b = yi − w · Φ(xi) + ε for 0 < α∗
i < C (6.33)

For those αi and α∗ for which the xi’s corresponding to 0 < αi < C and 0 < α∗
i < C

are called support vectors. Using expression for w and b in condition (6.31), f(x)

is computed as:

f(x) =
ℓ∑

i=1

(αi − α∗
i )(Φ(xi) · Φ(x)) + b (6.34)

=
ℓ∑

i=1

(αi − α∗
i )K(xi, x) + b (6.35)

6.4.3 Simulation and Results of the SVR Model

Similar to Section 6.2, the same datasets, X8306JP and X8411JP, were sim-

ulated by R programming scripts. Next, we tested the outcomes of the simulations,
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Table 6.5 Simulation results using the SVR model to forecast the original X8306JP

datasets

Error estimation ratio

70-30 80-20 90-10

MAE 0.119858 0.0901522 0.06917873

MAPE 11.9858 9.01522 6.917873

MSE 3961.622 2197.663 1531.346

RMSE 62.94142 46.87924 39.13242

R2 0.9974257 0.9977784 0.9979817

AIC 20368.92 23084.57 25793.04

BIC 21140.94 23874.59 26598.95

Up-Down(%) 71.0718 74.21875 74.60815

which were nonlinear and nonstationary, and plotted them against the original test

datasets (used as a reference), as shown in Fig. 6.1 and 6.4.

The graphs are shown in Fig. 6.1 and 6.4 where the x-axis represents 963

test data points in the time series and the y-axis represents stock prices in US

dollars. At which shows the deviations between the simulated graph of the ARIMA

model compared with the original datasets. The two graphs are coincidentally in

a line where the x-axis represents the data points in the time series and the y-

axis represents the US dollars stock prices. The next step was to measure the

performance of the ARIMA model using a variety of loss estimators, i.e., MAE,

MAPE, MSE, RMSE, R2, AIC, BIC, and Accuracy count (up-down (%)). Table

6.1 and 6.2 show that the MAPE of the X8306JP and the X8411JP are 11.9858

and 12.72942, respectively. Furthermore, accuracy count of the MCMC model for
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Table 6.6 Simulation results using the SVR model to forecast the original X8411JP

datasets

Error estimation ratio

70-30 80-20 90-10

MAE 0.1277924 0.09545473 0.08043003

MAPE 12.77924 9.545473 8.043003

MSE 896.418 385.1804 490.3925

RMSE 29.94024 19.62601 22.14481

R2 0.9982478 0.9984209 0.9985441

AIC 17715.23 20131.97 22476.5

BIC 18487.26 20921.99 23282.41

Up-Down(%) 71.38398 71.5625 73.04075

the X8306JP and the X8411JP were better than the ARIMA model, i.e., 71.0718%

and 71.38398%, respectively.

The measurement of the performance of the SVR model for these two

datasets with 80-20 and 90-10 ratio shown in Table 6.5 and 6.6. The plots of

80-20 and 90-10 ratio shown in the graphs in Fig. 6.2, 6.5, 6.3 and 6.6, respec-

tively. As the results in Table 6.5 and 6.6, the MAPE of the results of the X8306JP

and the X8411JP datasets were decrease to 6.917873 and 8.043003, respectively.

6.5 Simulation Results for ARIMA, MCMC, and SVR

This section shows the graphs of the simulation results for X8306JP and

X8411JP with the three models as mentioned before.
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for X8306JP

Figure 6.1 The graphs are the simulation using the ARIMA, MCMC, and SVR

models with ratio 70-30 for X8306JP
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Figure 6.2 The graphs are the simulation using the ARIMA, MCMC, and SVR

models with ratio 80-20 for X8306JP
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Figure 6.3 The graphs are the simulation using the ARIMA, MCMC, and SVR

models with ratio 90-10 for X8306JP
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Figure 6.4 The graphs are the simulation using the ARIMA, MCMC, and SVR

models with ratio 70-30 for X8411JP
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Figure 6.5 The graphs are the simulation using the ARIMA, MCMC, and SVR

models with ratio 80-20 for X8411JP
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Figure 6.6 The graphs are the simulation using the ARIMA, MCMC, and SVR

models with ratio 90-10 for X8411JP
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The Fig. 6.1, 6.4, 6.2, 6.5, 6.3, and 6.6 show that the MCMC and the SVR

model fit the test datatsets better than the ARIMA model.
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Figure 6.7 The graphs are the simulation using the ARIMA, MCMC, and SVR

models with ratio 70-30 for DBKGR
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Figure 6.8 The graphs are the simulation using the ARIMA, MCMC, and SVR

models with ratio 70-30 for GLEFP
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Table 6.7 Simulation results using the ARIMA, MCMC, and SVR models to

forecast the DBKGR datasets

Error estimation ARIMA MCMC SVR

MAE 0.233773 0.08146731 0.08291266

MAPE 23.3773 8.146731 8.291266

MSE 72.2152 13.05435 12.47678

RMSE 3.532249 3.61308 3.532249

R2 NA 0.9409209 0.9976014

AIC 6359.17 13794.09 6849.144

BIC NA 13811.24 7621.166

Up-Down(%) 56.71176 83.35068 77.93965

Table 6.8 Simulation results using the ARIMA, MCMC, and SVR models to

forecast the GLEFP datasets

Error estimation ARIMA MCMC SVR

MAE 0.6504123 0.2567641 0.123659

MAPE 65.04123 25.67641 12.3659

MSE 263.7531 49.14653 21.16357

RMSE 4.600389 7.010458 4.600389

R2 NA 0.9409209 0.9978771

AIC 7599.399 15299.97 8080.249

BIC NA 15317.12 8852.272

Up-Down(%) 61.6025 83.35068 81.06139
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The simulation results for the other high correlated coefficient paired stocks,

the DBKGR and the GLEFP, with 70-30 ratio shown in Fig. 6.7 and 6.8. The

measurement of the performance of the ARIMA, MCMC and SVR models for

these two datasets, the DBKGR and the GLEFP , with 70-30 ratio shown in

Table 6.7 and 6.8 as well. For the DBKGR, table 6.7 show that the MAPE of the

MCMC is like that of the SVR model,8.146731 and 8.291266, respectively. For the

GLEFP, table 6.8 show that the MAPE of the MCMC is greater that that of the

SVR model,25.67641 and 12.3659, respectively. The Fig. 6.7 and 6.8 show that

the SVR model show the best results for the paired stocks, the DBGKR and the

GLEFP.



CHAPTER VII

CONCLUSION, DISCUSSION AND FUTURE

WORK

The concept of Pairs Trading is a market neutral strategy that uses a portfo-

lio of only two securities. A long position is adopted with respect to one safety and

a short position with respect to the other. The strategy of pairs trading requires

adopting a position when the spread is distant from the mean in anticipation of

spread reversion. This thesis introduces a multi-class Pairs Trading model using

Mean Reversion and CV that enhances the original approach of Mean Reversion

Pairs Trading. The simulation results show that the co-integrated Pairs trading

using the proposed method outperforms those of the conventional co-integrated

Pairs Trading. Thus, benefits of the proposed model are to build a new set of

risk mitigation and maximise returns of co-integrated stocks. After choosing the

paired stocks, if the movement or the future price of the next time step to trade

can be predicted, the risk shall be reduced. The simulation results show that the

SVR model and the MCMC model outperform those of the ARIMA model. Future

research could examine the formation of frequency domain datasets rather than

times series as an alternative to correlation coefficient pairing.
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APPENDIX



APPENDIX A

PROGRAMME FILES

In this appendix, there are Matlab and R scripts programe in this research.

Chapter V and VI Programme

Matlab script
script1 : Pairs Trading

clear all

%run for f i rst paired stocks

%read data of 10 pair of stocks

pair10_g1 = xlsread( ’ al l .X8306JP7030. xlsx ’ ,1);

pair10_g2 = xlsread( ’ al l .X8411JP7030. xlsx ’ ,1);

[~ ,num_g1] = size (pair10_g1);

[time,num_g2] = size (pair10_g2);

return_diff = zeros(num_g1,num_g2);

return_cv = zeros(num_g1,num_g2);

return_cv1 = zeros(num_g1,num_g2);

area_diff = zeros(num_g1,num_g2);

for i1 = 1: 1

for j1 = 1: 1

xp1 = pair10_g1(: , i1 );

xp2 = pair10_g2(: , j1 );

%calculate mean

mean_xp1 = mean(xp1);

mean_xp2 = mean(xp2);

%calculate sd

sd_xp1 = std(xp1);

sd_xp2 = std(xp2);

%nomalize data

n_xp1 = zeros(time,1);

n_xp2 = zeros(time,1);

for i = 1:time

n_xp1( i ) = (xp1( i)−mean_xp1)/sd_xp1;

n_xp2( i ) = (xp2( i)−mean_xp2)/sd_xp2;

end

%calculate mean of normalized data

mean_nxp1 = mean(n_xp1);

mean_nxp2 = mean(n_xp2);

mean_nx1x2 = 0.5*(mean_nxp1+mean_nxp2);

%calculate sd of normalized data
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sd_nxp1 = std(n_xp1);

sd_nxp2 = std(n_xp2);

sd_nx1x2 = 0.5*(sd_nxp1+sd_nxp2);

%calculate return for xp1 and xp2

return_xp1 = zeros(time,1);

return_xp2 = zeros(time,1);

preturn_xp1 = zeros(time,1);

preturn_xp2 = zeros(time,1);

%calculate log return for xp1 and xp2

lreturn_xp1 = zeros(time,1);

lreturn_xp2 = zeros(time,1);

vreturn_xp1 = zeros(time,1);

vreturn_xp2 = zeros(time,1);

for t = 2:time

return_xp1(t) = (xp1(t)−xp1(t−1))/xp1(t−1);

preturn_xp1(t) = xp1(t)*return_xp1(t );

return_xp2(t) = (xp2(t)−xp2(t−1))/xp2(t−1);

preturn_xp2(t) = xp2(t)*return_xp2(t );

lreturn_xp1(t) = log(xp1(t)/xp1(t−1));

vreturn_xp1(t) = xp1(t)*lreturn_xp1(t );

lreturn_xp2(t) = log(xp2(t)/xp2(t−1));

vreturn_xp2(t) = xp2(t)*lreturn_xp2(t );

end

%calculate average return

avr_return_xp1 = mean(return_xp1);

avr_return_xp2 = mean(return_xp2);

%set

avr_return_cv = zeros (6 ,2);

%−−−−−−−−−−− 1st stock −−−−−−−−

%for xp1

%set class for xp1

group_xp1_temp = zeros(time,1);

group_xp1 = zeros(time,1);

group_xp2 = zeros(time,1);

%find the 1st mean reverse

for k1 = 1:time

if xp1(k1) <= mean_xp1

group_xp1_temp(k1) = 1;

else i f xp1(k1) > mean_xp1

group_xp1_temp(k1) = 2;

end

end

%consider group 1

%set c_xp1

xp1_1 = find(group_xp1_temp ==1);

c1_xp1 = zeros( size (xp1_1 ,1) ,1);

for i = 1: size (xp1_1,1)

c1_xp1( i ) = xp1(xp1_1( i ));

end

% find 2nd mean reverse

%calculate mean for class 1

m_c1_xp1 = mean(c1_xp1);

sd_c1_xp1 = std(c1_xp1);
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%−−−−−−−−−−−−lower mean−−−−−−−−−−

%set class for xp1

class_xp1 = zeros( size (xp1_1 ,1) ,1);

for i = 1: size (xp1_1,1)

i f c1_xp1( i)<= (m_c1_xp1 − sd_c1_xp1)

class_xp1( i ) = 1;

group_xp1(xp1_1( i )) = class_xp1( i );

e lse i f c1_xp1( i ) > (m_c1_xp1 − sd_c1_xp1) && c1_xp1( i ) < (m_c1_xp1 + sd_c1_xp1)

class_xp1( i ) = 2;

group_xp1(xp1_1( i )) = class_xp1( i );

e lse i f c1_xp1( i)>= m_c1_xp1 + sd_c1_xp1

class_xp1( i ) = 3;

group_xp1(xp1_1( i )) = class_xp1( i );

end

end

new_c1_xp1 = [c1_xp1 class_xp1] ;

%set CV

cv1 = zeros (6 ,1);

num_CV = zeros (6 ,2);

%−−−−−−−−−−−−class 1−−−−−−−−−−−−−−−

%calculate mean, var, cv for class 1

c11_xp1_temp = find(class_xp1 == 1);

c11_xp1 = zeros( size (c11_xp1_temp,1) ,1);

num_CV(1,1) = size (c11_xp1_temp,1);

for i = 1: size (c11_xp1_temp,1)

c11_xp1( i ) = c1_xp1(c11_xp1_temp( i ));

end

m_c11_xp1 = mean(c11_xp1);

var_c11_xp1 = std(c11_xp1)^2;

cv1(1) = std(c11_xp1)/m_c11_xp1;

%calculate return

return_cv11 = zeros( size (c11_xp1_temp,1) ,1);

for i = 2: size (c11_xp1_temp,1)

return_cv11( i ) = log(c11_xp1( i )/c11_xp1( i−1));

end

avr_return_cv(1,1) = mean(return_cv11);

%−−−−−−−−−−−−−−−−−−−class 2−−−−−−−−−−−−−−−−−−

%calculate mean, var, cv for class 1

c12_xp1_temp = find(class_xp1 == 2);

c12_xp1 = zeros( size (c12_xp1_temp,1) ,1);

num_CV(2,1) = size (c12_xp1_temp,1);

for i = 1: size (c12_xp1_temp,1)

c12_xp1( i ) = c1_xp1(c12_xp1_temp( i ));

end

m_c12_xp1 = mean(c12_xp1);

var_c12_xp1 = std(c12_xp1)^2;

cv1(2) = std(c12_xp1)/m_c12_xp1;

%calculate return

return_cv12 = zeros( size (c12_xp1_temp,1) ,1);

for i = 2: size (c12_xp1_temp,1)

return_cv12( i ) = log(c12_xp1( i )/c12_xp1( i−1));

end

avr_return_cv(2,1) = mean(return_cv12);
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%−−−−−−−−−−−−−−−−class 3−−−−−−−−−−−

%calculate mean, var, cv for class 1

c13_xp1_temp = find(class_xp1 == 3);

c13_xp1 = zeros( size (c13_xp1_temp,1) ,1);

num_CV(3,1) = size (c13_xp1_temp,1);

for i = 1: size (c13_xp1_temp,1)

c13_xp1( i ) = c1_xp1(c13_xp1_temp( i ));

end

m_c13_xp1 = mean(c13_xp1);

var_c13_xp1 = std(c13_xp1)^2;

cv1(3) = std(c13_xp1)/m_c13_xp1;

%calculate return

return_cv13 = zeros( size (c13_xp1_temp,1) ,1);

for i = 2: size (c13_xp1_temp,1)

return_cv13( i ) =

log(c13_xp1( i )/c13_xp1( i−1));

end

avr_return_cv(3,1) = mean(return_cv13);

%consider group 2

%set c_xp2

xp1_2 = find(group_xp1_temp == 2);

c2_xp1 = zeros( size (xp1_2 ,1) ,1);

for i = 1: size (xp1_2,1)

c2_xp1( i ) = xp1(xp1_2( i ));

end

% find 2nd mean reverse

%calculate mean for class 1

m_c2_xp1 = mean(c2_xp1);

sd_c2_xp1 = std(c2_xp1);

%−−−−−−−−−−−−−−upper mean−−−−−−−−−−−−−−−

%set class for xp1

class_xp12 = zeros( size (xp1_2 ,1) ,1);

for i = 1: size (xp1_2,1)

i f c2_xp1( i)<= (m_c2_xp1 − sd_c2_xp1)

class_xp12( i ) = 4;

group_xp1(xp1_2( i )) = class_xp12( i ) ;

e lse i f c2_xp1( i ) > (m_c2_xp1 − sd_c2_xp1) && c2_xp1( i ) < (m_c2_xp1 + sd_c2_xp1)

class_xp12( i ) = 5;

group_xp1(xp1_2( i )) = class_xp12( i ) ;

e lse i f c2_xp1( i)>= m_c2_xp1 + sd_c2_xp1

class_xp12( i ) = 6;

group_xp1(xp1_2( i )) = class_xp12( i ) ;

end

end

new_c2_xp1 = [c2_xp1 class_xp12] ;

%−−−−−−−−−−−−−−−−−−−−class 4−−−−−−−−−−−−−−

%calculate mean, var, cv for class 4

c14_xp1_temp = find(class_xp12 == 4);

c14_xp1 = zeros( size (c14_xp1_temp,1) ,1);

num_CV(4,1) = size (c14_xp1_temp,1);

for i = 1: size (c14_xp1_temp,1)

c14_xp1( i ) = c2_xp1(c14_xp1_temp( i ));
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end

m_c14_xp1 = mean(c14_xp1);

var_c14_xp1 = std(c14_xp1)^2;

cv1(4) = std(c14_xp1)/m_c14_xp1;

%calculate return

return_cv14 = zeros( size (c14_xp1_temp,1) ,1);

for i = 2: size (c14_xp1_temp,1)

return_cv14( i ) = log(c14_xp1( i )/c14_xp1( i−1));

end

avr_return_cv(4,1) = mean(return_cv14);

%−−−−−−−−−−−−−−−−−−class 5−−−−−−−−−−−−

%calculate mean, var, cv for class 5

c15_xp1_temp = find(class_xp12 == 5);

c15_xp1 = zeros( size (c15_xp1_temp,1) ,1);

num_CV(5,1) = size (c15_xp1_temp,1);

for i = 1: size (c15_xp1_temp,1)

c15_xp1( i ) = c2_xp1(c15_xp1_temp( i ));

end

m_c15_xp1 = mean(c15_xp1);

var_c15_xp1 = std(c15_xp1)^2;

cv1(5) = std(c15_xp1)/m_c15_xp1;

%calculate return

return_cv15 = zeros( size (c15_xp1_temp,1) ,1);

for i = 2: size (c15_xp1_temp,1)

return_cv15( i ) = log(c15_xp1( i )/c15_xp1( i−1));

end

avr_return_cv(5,1) = mean(return_cv15);

%−−−−−−−−−−−−−−−−−−−−class 6−−−−−−−−−−−−−−−−−−

%calculate mean, var, cv for class 6

c16_xp1_temp = find(class_xp12 == 6);

c16_xp1 = zeros( size (c16_xp1_temp,1) ,1);

num_CV(6,1) = size (c16_xp1_temp,1);

for i = 1: size (c16_xp1_temp,1)

c16_xp1( i ) = c2_xp1(c16_xp1_temp( i ));

end

m_c16_xp1 = mean(c16_xp1);

var_c16_xp1 = std(c16_xp1)^2;

cv1(6) = std(c16_xp1)/m_c16_xp1;

%calculate return

return_cv16 = zeros( size (c16_xp1_temp,1) ,1);

for i = 2: size (c16_xp1_temp,1)

return_cv16( i ) = log(c16_xp1( i )/c16_xp1( i−1));

end

avr_return_cv(6,1) = mean(return_cv16);

%−−−−−−−−−− 2nd stock −−−−−−−−−−−−−−

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%for xp2

%set class for xp2

group_xp2_temp = zeros(time,1);

%find the 1st mean reverse

for i = 1:time

if xp2( i ) <= mean_xp2
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group_xp2_temp( i ) = 1;

e lse i f xp2( i ) > mean_xp2

group_xp2_temp( i ) = 2;

end

end

%consider group 1

%set c_xp1

xp2_1 = find(group_xp2_temp ==1);

c1_xp2 = zeros( size (xp2_1 ,1) ,1);

for i = 1: size (xp2_1,1)

c1_xp2( i ) = xp2(xp2_1( i ));

end

% find 2nd mean reverse

%calculate mean for class 1

m_c1_xp2 = mean(c1_xp2);

sd_c1_xp2 = std(c1_xp2);

%−−−−−−−−−−−−−−lower mean−−−−−−−−

%set class for xp2

class_xp2 = zeros( size (xp2_1 ,1) ,1);

for i = 1: size (xp2_1,1)

i f c1_xp2( i)<= (m_c1_xp2 − sd_c1_xp2)

class_xp2( i ) = 1;

group_xp2(xp2_1( i )) = class_xp2( i );

e lse i f c1_xp2( i ) > (m_c1_xp2 − sd_c1_xp2)&& c1_xp2( i ) < (m_c1_xp2 + sd_c1_xp2)

class_xp2( i ) = 2;

group_xp2(xp2_1( i )) = class_xp2( i );

e lse i f c1_xp2( i)>= m_c1_xp2 + sd_c1_xp2

class_xp2( i ) = 3;

group_xp2(xp2_1( i )) = class_xp2( i );

end

end

new_c1_xp2 = [c1_xp2 class_xp2] ;

%set CV

cv2 = zeros (6 ,1);

%−−−−−−−−−−−−−−−−−−−−class 1−−−−−−−−−−−−−

%calculate mean, var, cv for class 1

c11_xp2_temp = find(class_xp2 == 1);

c11_xp2 = zeros( size (c11_xp2_temp,1) ,1);

num_CV(1,2) = size (c11_xp2_temp,1);

for i = 1: size (c11_xp2_temp,1)

c11_xp2( i ) = c1_xp2(c11_xp2_temp( i ));

end

m_c11_xp2 = mean(c11_xp2);

var_c11_xp2 = std(c11_xp2)^2;

cv2(1) = std(c11_xp2)/m_c11_xp2;

%calculate return

return_cv21 = zeros( size (c11_xp2_temp,1) ,1);

for i = 2: size (c11_xp2_temp,1)

return_cv21( i ) = log(c11_xp2( i )/c11_xp2( i−1));

end

avr_return_cv(1,2) = mean(return_cv21);

%−−−−−−−−−−−−−−−−−−−−class 2−−−−−−−−−−−−

%calculate mean, var, cv for class 2
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c12_xp2_temp = find(class_xp2 == 2);

c12_xp2 = zeros( size (c12_xp2_temp,1) ,1);

num_CV(2,2) = size (c12_xp2_temp,1);

for i = 1: size (c12_xp2_temp,1)

c12_xp2( i ) = c1_xp2(c12_xp2_temp( i ));

end

m_c12_xp2 = mean(c12_xp2);

var_c12_xp2 = std(c12_xp2)^2;

cv2(2) = std(c12_xp2)/m_c12_xp2;

%calculate return

return_cv22 = zeros( size (c12_xp2_temp,1) ,1);

for i = 2: size (c12_xp2_temp,1)

return_cv22( i ) = log(c12_xp2( i )/c12_xp2( i−1));

end

avr_return_cv(2,2) = mean(return_cv22);

%−−−−−−−−−−−−−−−−−−−−class 3−−−−−−−−−

%calculate mean, var, cv for class 3

c13_xp2_temp = find(class_xp2 == 3);

c13_xp2 = zeros( size (c13_xp2_temp,1) ,1);

num_CV(3,2) = size (c13_xp2_temp,1);

for i = 1: size (c13_xp2_temp,1)

c13_xp2( i ) = c1_xp2(c13_xp2_temp( i ));

end

m_c13_xp2 = mean(c13_xp2);

var_c13_xp2 = std(c13_xp2)^2;

cv2(3) = std(c13_xp2)/m_c13_xp2;

%calculate return

return_cv23 = zeros( size (c13_xp2_temp,1) ,1);

for i = 2: size (c13_xp2_temp,1)

return_cv23( i ) = log(c13_xp2( i )/c13_xp2( i−1));

end

avr_return_cv(3,2) = mean(return_cv23);

%consider group 2

%set c_xp1

xp2_2 = find(group_xp2_temp == 2);

c2_xp2 = zeros( size (xp2_2 ,1) ,1);

for i = 1: size (xp2_2,1)

c2_xp2( i ) = xp2(xp2_2( i ));

end

% find 2nd mean reverse

%calculate mean for class 1

m_c2_xp2 = mean(c2_xp2);

sd_c2_xp2 = std(c2_xp2);

%−−−−−−−−−−−−−−−−upper mean−−−−

%set class for xp1

class_xp22 = zeros( size (xp2_2 ,1) ,1);

for i = 1: size (xp2_2,1)

i f c2_xp2( i)<= (m_c2_xp2 − sd_c2_xp2)

class_xp22( i ) = 4;

group_xp2(xp2_2( i )) = class_xp22( i ) ;

e lse i f c2_xp2( i ) > (m_c2_xp2 − sd_c2_xp2) && c2_xp2( i ) < (m_c2_xp2 + sd_c2_xp2)

class_xp22( i ) = 5;

group_xp2(xp2_2( i )) = class_xp22( i ) ;
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else i f c2_xp2( i)>= m_c2_xp2 + sd_c2_xp2

class_xp22( i ) = 6;

group_xp2(xp2_2( i )) = class_xp22( i ) ;

end

end

new_c2_xp2 = [c2_xp2 class_xp22] ;

%−−−−−−−−−−−−−−−−−−−class 4−−−−−−−−−−−

%calculate mean, var, cv for class 4

c14_xp2_temp = find(class_xp22 == 4);

c14_xp2 = zeros( size (c14_xp2_temp,1) ,1);

num_CV(4,2) = size (c14_xp2_temp,1);

for i = 1: size (c14_xp2_temp,1)

c14_xp2( i ) = c2_xp2(c14_xp2_temp( i ));

end

m_c14_xp2 = mean(c14_xp2);

var_c14_xp2 = std(c14_xp2)^2;

cv2(4) = std(c14_xp2)/m_c14_xp2;

%calculate return

return_cv24 = zeros( size (c14_xp2_temp,1) ,1);

for i = 2: size (c14_xp2_temp,1)

return_cv24( i ) = log(c14_xp2( i )/c14_xp2( i−1));

end

avr_return_cv(4,2) = mean(return_cv24);

%−−−−−−−−−−−−−−−−−−class 5−−−−−−−−−−

%calculate mean, var, cv for class 5

c15_xp2_temp = find(class_xp22 == 5);

c15_xp2 = zeros( size (c15_xp2_temp,1) ,1);

num_CV(5,2) = size (c15_xp2_temp,1);

for i = 1: size (c15_xp2_temp,1)

c15_xp2( i ) = c2_xp2(c15_xp2_temp( i ));

end

m_c15_xp2 = mean(c15_xp2);

var_c15_xp2 = std(c15_xp2)^2;

cv2(5) = std(c15_xp2)/m_c15_xp2;

%calculate return

return_cv25 = zeros( size (c15_xp2_temp,1) ,1);

for i = 2: size (c15_xp2_temp,1)

return_cv25( i ) =

log(c15_xp2( i )/c15_xp2( i−1));

end

avr_return_cv(5,2) = mean(return_cv25);

%−−−−−−−−−−−−−−−−−−−class 6−−−−−−−−

%calculate mean, var, cv for class 6

c16_xp2_temp = find(class_xp22 == 6);

c16_xp2 = zeros( size (c16_xp2_temp,1) ,1);

num_CV(6,2) = size (c16_xp2_temp,1);

for i = 1: size (c16_xp2_temp,1)

c16_xp2( i ) = c2_xp2(c16_xp2_temp( i ));

end

m_c16_xp2 = mean(c16_xp2);

var_c16_xp2 = std(c16_xp2)^2;

cv2(6) = std(c16_xp2)/m_c16_xp2;

%calculate return
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return_cv26 = zeros( size (c16_xp2_temp,1) ,1);

for i = 2: size (c16_xp2_temp,1)

return_cv26( i ) = log(c16_xp2( i )/c16_xp2( i−1));

end

avr_return_cv(6,2) = mean(return_cv26);

%CV

CV = [cv1 cv2 ] ;

avr_return_cv;

%−−−−−−−−−−−−−−calculate prob. using MC−−−−−−−−−

%for x1 and x2

no_p1 = zeros (6 ,6);

no_p2 = zeros (6 ,6);

for pp = 1 : time−1

for mm = 1 : 6

i f group_xp1(pp) ==mm

for cc = 1: 6

i f group_xp1(pp+1) == cc

no_p1(mm, cc) = no_p1(mm, cc)+1;

end

end

end

end

end

for pp = 1 : time−1

for mm = 1 : 6

i f group_xp2(pp) ==mm

for cc = 1: 6

i f group_xp2(pp+1) == cc

no_p2(mm, cc) = no_p2(mm, cc)+1;

end

end

end

end

end

%calculate transition matrix

p_no1 = [no_p1(1 ,:)/sum(no_p1(1 ,:)) ;

no_p1(2 ,:)/sum(no_p1(2 ,:));

no_p1(3 ,:)/sum(no_p1(3 ,:)) ;

no_p1(4 ,:)/sum(no_p1(4 ,:)) ;

no_p1(5 ,:)/sum(no_p1(5 ,:)) ;

no_p1(6 ,:)/sum(no_p1(6 ,:)) ] ;

p_no2 = [no_p2(1 ,:)/sum(no_p2(1 ,:)) ;

no_p2(2 ,:)/sum(no_p2(2 ,:));

no_p2(3 ,:)/sum(no_p2(3 ,:)) ;

no_p2(4 ,:)/sum(no_p2(4 ,:)) ;

no_p2(5 ,:)/sum(no_p2(5 ,:)) ;

no_p2(6 ,:)/sum(no_p2(6 ,:)) ] ;

%case : trad every day

%for x1

sum1_all = 0;

trade1_all = zeros(time,1);

w1_all = zeros(time,1);

for tt = 1: time
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trade1_all(tt) = 1;

sum1_all = sum1_all+trade1_all(tt );

w1_all(tt) = 1/sum1_all ;

end

%for x2

sum2_all = 0;

trade2_all = zeros(time,1);

w2_all = zeros(time,1);

for tt = 1: time

trade2_all (tt) = 1;

sum2_all = sum2_all+trade2_all(tt );

w2_all(tt) = 1/sum2_all ;

end

%calculate return

case1_RE = zeros(time,1);

c = 0.25;

tc = 2*log((1−c)/(1+c));

%calculate return : case trade every day

case0_RE = zeros(time,1);

for i = 1:time

if xp1( i ) < xp2( i )

%long x1, short x2

case0_RE( i ) =

lreturn_xp1( i )*w1_all( i ) −lreturn_xp2( i )*w2_all( i ) + tc ;

e lse i f xp1( i ) > xp2( i )

%long x2, short x1

case0_RE( i ) =

−lreturn_xp1( i )*w1_all( i ) +lreturn_xp2( i )*w2_all( i ) + tc ;

else case0_RE( i ) = 0;

end

end

return_case0 = sum(case0_RE);

% case : CV

%for x1

sum1 = 0;

trade1 = zeros(time,1);

w1 = zeros(time,1);

pp_no_1 = zeros(time,1);

for tt = 1: time−2

i f group_xp1(tt+1) == group_xp1(tt)

i f group_xp1(tt+2) == group_xp1(tt+1)

trade1(tt+1) = 1;

%prob. of cv of time tt+1 given cv of time tt+1

pp_no_1(tt+1) =

p_no1(group_xp1(tt ) ,

group_xp1(tt+1));

sum1 = sum1+trade1(tt+1);

w1(tt+1) = 1/sum1;

else trade1(tt+1) = 0;

sum1 = sum1+trade1(tt+1);

w1(tt+1) = 1/sum1;

end

else trade1(tt+1) = 0;
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sum1 = sum1+trade1(tt+1);

w1(tt+1) = 1/sum1;

end

end

% weight for x1

%num_trade1 = sum(trade1 );

nw1 = 1/sum(trade1 );

%for x2

sum2 = 0;

trade2 = zeros(time,1);

w2 = zeros(time,1);

pp_no_2 = zeros(time,1);

for tt = 1: time−2

i f group_xp2(tt+1) == group_xp2(tt)

i f group_xp2(tt+2) == group_xp2(tt+1)

trade2(tt+1) = 1;

%prob. of cv of time tt+1 given cv of time tt+1

pp_no_2(tt+1) = p_no2(group_xp2(tt ) ,group_xp2(tt+1));

sum2 = sum2+trade2(tt+1);

w2(tt+1) = 1/sum2;

else trade2(tt+1) = 0;

sum2 = sum2+trade2(tt+1);

w2(tt+1) = 1/sum2;

end

else trade2(tt+1) = 0;

sum2 = sum2+trade2(tt+1);

w2(tt+1) = 1/sum2;

end

end

% weight for x2

nw2 = 1/sum(trade2 );

profit_xp1 = sum(preturn_xp1);

%calculate diff

diff = zeros(time,1);

for i = 1 :time

diff( i ) = abs(xp1( i)−xp2( i ));

end

area_diff(i1 , j1) = sum(diff );

%calculate return using diff

t1 = zeros(time,1);

t2 = zeros(time,1);

sw1=0;

sw2=0;

wt1 = zeros(time,1);

wt2 = zeros(time,1);

for i = 1:time

if diff( i ) >= 0.1*min(xp1( i ) ,xp2( i ))

t1( i ) = 1;

t2( i ) = 1;

sw1 = sw1 +t1( i );

sw2 = sw2 +t2( i );

wt1( i ) = 1/sw1;
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wt2( i ) = 1/sw2;

i f xp1( i ) < xp2( i )

%long x1, short x2

case1_RE( i ) =

lreturn_xp1( i )*wt1( i ) − lreturn_xp2( i )*wt2( i ) + tc ;

e lse i f xp1( i ) > xp2( i )

%long x2, short x1

case1_RE( i ) =

−lreturn_xp1( i )*wt1( i ) +lreturn_xp2( i )*wt2( i ) + tc ;

else case1_RE( i ) = 0;

end

else case1_RE( i ) =0;

end

end

sum_case1_RE = sum(case1_RE);

prob_return = sum_case1_RE;

%calculate ratio between x1 and x2

xp1_xp2 = zeros(time,1);

for i = 1 : time

xp1_xp2( i ) = xp1( i )/xp2( i );

end

%calculate return with CV

case2_RE = zeros(time,1);

case21_RE = zeros(time,1);

num_trade1 = sum(trade1 );

num_trade2 = sum(trade2 );

for i = 1:time

if trade1( i ) == 1

i f trade2( i ) == 1

%long x1, short x2

i f diff( i ) >= 0.1*min(xp1( i ) ,xp2( i ))

i f xp1( i ) < xp2( i )

%long x1, short x2

case2_RE( i ) =

lreturn_xp1( i )*w1( i )*pp_no_1( i)−lreturn_xp2( i )*w2( i )*pp_no_2( i ) + tc ;

case21_RE( i ) =

lreturn_xp1( i )*w1( i)−lreturn_xp2( i )*w2( i ) + tc ;

e lse i f xp1( i ) > xp2( i )

%long x2, short x1

case2_RE( i ) =

−lreturn_xp1( i )*w1( i )*pp_no_1( i)+ lreturn_xp2( i )*w2( i )*pp_no_2( i ) + tc ;

case21_RE( i ) =

−lreturn_xp1( i )*w1( i)+lreturn_xp2( i )*w2( i ) + tc ;

end

end

end

end

end

dif_case_2_21 = abs(case21_RE−case2_RE);

sum_case2_RE_1 =sum(case2_RE);

return_diff(i1 , j1) = 0.75*sum_case1_RE;

return_cv(i1 , j1) = sum_case2_RE_1;

%consider for each range of time to trade without CV
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for kkk = 1: 3

d_pair = [ t1 t2 ] ;

kd_pair = zeros(time+1,1);

d_pair1 = zeros(time,1);

for i = 1:time

if t1( i ) == 1

i f t2( i ) == 1

i f diff( i ) >= 0.1*min(xp1( i ) ,xp2( i ))

kd_pair( i ) = i ;

d_pair1( i ) = 1;

end

end

end

end

pd_t0 = zeros(time,1);

pd_t1 = zeros(time,1);

temp_td = zeros(time,1);

ptd = 1;

for i= 1 : time

if kd_pair( i)>0

temp_td( i ) = kd_pair( i ) ;

i f kd_pair( i+1) == 0

pd_t1(ptd) = max(temp_td);

temp_td(~temp_td) = nan;

pd_t0(ptd) = min(temp_td);

temp_td = zeros(time,1);

ptd = ptd+1;

end

end

end

pd_t0 = pd_t0( is f inite (pd_t0 ));

pd_t0 = pd_t0(pd_t0~= 0);

pd_t1 = pd_t1( is f inite (pd_t1 ));

pd_t1 = pd_t1(pd_t1~= 0);

no_pd_t = zeros(time,1);

[ std1 rr ] = size (pd_t0 );

for i = 1 : std1

no_pd_t( i ) = pd_t1( i)−pd_t0( i)+1;

end

no_pd_t = no_pd_t(no_pd_t~= 0);

% cutting trading time < 3

for i = 1 : std1

i f no_pd_t( i ) < 3

no_pd_t( i ) = 0;

cut0 = pd_t0( i ) ;

cut1 = pd_t1( i ) ;

for ic = cut0 : cut1

t1( ic ) = 0;

t2( ic ) = 0;

end

end

end

end
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%price block

xp1_0d_block = zeros(std1 ,1);

xp2_0d_block = zeros(std1 ,1);

xp1_1d_block = zeros(std1 ,1);

xp2_1d_block = zeros(std1 ,1);

for i = 1 : std1

xp1_0d_block( i ) = xp1(pd_t0( i ));

xp1_1d_block( i ) = xp1(pd_t1( i ));

xp2_0d_block( i ) = xp2(pd_t0( i ));

xp2_1d_block( i ) = xp2(pd_t1( i ));

end

xd_block = [xp1_0d_block xp1_1d_block

xp2_0d_block xp2_1d_block ] ;

%calculate return using diff

t1 = zeros(time,1);

t2 = zeros(time,1);

sw1=0;

sw2=0;

wt1 = zeros(time,1);

wt2 = zeros(time,1);

for i = 1:time

if diff( i ) >= 0.1*min(xp1( i ) ,xp2( i ))

t1( i ) = 1;

t2( i ) = 1;

sw1 = sw1 +t1( i );

sw2 = sw2 +t2( i );

wt1( i ) = 1/sw1;

wt2( i ) = 1/sw2;

i f xp1( i ) < xp2( i )

%long x1, short x2

case1_RE( i ) =

lreturn_xp1( i )*wt1( i ) − lreturn_xp2( i )*wt2( i ) + tc ;

e lse i f xp1( i ) > xp2( i )

%long x2, short x1

case1_RE( i ) =

−lreturn_xp1( i )*wt1( i ) +lreturn_xp2( i )*wt2( i ) + tc ;

else case1_RE( i ) = 0;

end

else case1_RE( i ) =0;

end

end

sum_case1_RE = sum(case1_RE);

prob_return = 0.75*sum_case1_RE;

return_diff(i1 , j1) = sum_case1_RE;

%return block

red_block = zeros(std1 ,1);

for i = 1 : std1

tt0 = pd_t0( i ) ;

tt1 = pd_t1( i ) ;

for ib = tt0 : tt1

red_block( i ) =

red_block( i)+ case1_RE(ib );

end
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end

returnd_block = abs(red_block );

%consider for each range of time to trade

for kk = 1 : 3

trade_pair = [ trade1 trade2 ] ;

k_pair = zeros(time+1,1);

trade_pair1 = zeros(time,1);

for i = 1:time

if trade1( i ) == 1

i f trade2( i ) == 1

i f diff( i ) >=

0.1*min(xp1( i ) ,xp2( i ))

k_pair( i ) = i ;

trade_pair1( i ) = 1;

end

end

end

end

case4_RE = zeros(time,1);

sum_case4 = zeros(time,1);

p_t0 = zeros(time,1);

p_t1 = zeros(time,1);

temp_t = zeros(time,1);

pt = 1;

for i= 1 : time

if k_pair( i)>0

temp_t( i ) = k_pair( i ) ;

i f k_pair( i+1) == 0

p_t1(pt) = max(temp_t );

temp_t(~temp_t) = nan;

p_t0(pt) = min(temp_t );

temp_t = zeros(time,1);

pt = pt+1;

end

end

end

p_t0 = p_t0( is f inite (p_t0 ));

p_t0 = p_t0(p_t0~= 0);

p_t1 = p_t1( is f inite (p_t1 ));

p_t1 = p_t1(p_t1~= 0);

no_p_t = zeros(time,1);

for i = 1 : size (p_t0)

no_p_t( i ) = p_t1( i)−p_t0( i)+1;

end

no_p_t = no_p_t(no_p_t~= 0);

[ st rr1 ] = size (p_t0 );

% cutting trading time < 3

for i = 1 : st

i f no_p_t( i ) < 3

no_p_t( i ) = 0;

cut0 = p_t0( i ) ;

cut1 = p_t1( i ) ;

for ic = cut0 : cut1
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trade1( ic ) = 0;

trade2( ic ) = 0;

end

end

end

end

%price block

xp1_0_block = zeros(st ,1);

xp2_0_block = zeros(st ,1);

xp1_1_block = zeros(st ,1);

xp2_1_block = zeros(st ,1);

for i = 1 : st

xp1_0_block( i ) = xp1(p_t0( i ));

xp1_1_block( i ) = xp1(p_t1( i ));

xp2_0_block( i ) = xp2(p_t0( i ));

xp2_1_block( i ) = xp2(p_t1( i ));

xp1_cv_block = group_xp1(p_t0( i ));

xp2_cv_block = group_xp1(p_t0( i ));

end

x_block = [xp1_0_block xp1_1_block

xp2_0_block xp2_1_block ] ;

%CV block

xp1_0_cv_block = zeros(st ,1);

xp2_0_cv_block = zeros(st ,1);

xp1_1_cv_block = zeros(st ,1);

xp2_1_cv_block = zeros(st ,1);

for i = 1 : st

xp1_0_cv_block( i ) = group_xp1(p_t0( i ));

xp2_0_cv_block( i ) = group_xp1(p_t0( i ));

end

cv_block = [xp1_0_cv_block xp2_0_cv_block ] ;

%prob block

pp1_block = zeros(st ,1);

pp2_block = zeros(st ,1);

for i = 1 : st

pp1_block( i ) = pp_no_1(p_t0( i ));

pp2_block( i ) = pp_no_2(p_t0( i ));

end

pp_block = [pp1_block pp2_block ] ;

%calculate ratio between x1 and x2

xp1_xp2 = zeros(time,1);

for i = 1 : time

xp1_xp2( i ) = xp1( i )/xp2( i );

end

%calculate return with CV

case2_RE = zeros(time,1);

case21_RE = zeros(time,1);

num_trade1 = sum(trade1 );

num_trade2 = sum(trade2 );

for i = 1:time

if trade1( i ) == 1

i f trade2( i ) == 1

%long x1, short x2
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i f diff( i ) >= 0.1*min(xp1( i ) ,xp2( i ))

i f xp1( i ) < xp2( i )

%long x1, short x2

case2_RE( i ) =

lreturn_xp1( i )*w1( i )*pp_no_1( i)−lreturn_xp2( i )*w2( i )*pp_no_2( i ) +

tc ;

case21_RE( i ) =

lreturn_xp1( i )*w1( i)−lreturn_xp2( i )*w2( i ) + tc ;

e lse i f xp1( i ) > xp2( i )

%long x2, short x1

case2_RE( i ) =

−lreturn_xp1( i )*w1( i )*pp_no_1( i)+lreturn_xp2( i )*w2( i )*pp_no_2( i ) +

tc ;

case21_RE( i ) =

−lreturn_xp1( i )*w1( i)+lreturn_xp2( i )*w2( i ) + tc ;

end

end

end

end

end

dif_case_2_21 = abs(case21_RE−case2_RE);

sum_case2_RE_1 =sum(case2_RE);

return_cv(i1 , j1) = sum_case2_RE_1;

%return block

re_block = zeros(st ,1);

for i = 1 : st

tt0 = p_t0( i ) ;

tt1 = p_t1( i ) ;

for ib = tt0 : tt1

re_block( i ) = re_block( i)+

case2_RE(ib );

end

end

return_block = abs(re_block );

%calculate return using CV and xp1,xp2 %no prob.

case3_RE = zeros(time,1);

for i = 1:time

if trade1( i ) == 1

i f trade2( i ) == 1

%long x1, short x2

i f diff( i ) >= 0.1*min(xp1( i ) ,xp2( i ))

i f xp1( i ) < xp2( i )

%long x1, short x2

case3_RE( i ) =

lreturn_xp1( i )*w1( i ) − lreturn_xp2( i )*w2( i ) + tc ;

e lse i f xp1( i ) > xp2( i )

%long x2, short x1

case3_RE( i ) =

−lreturn_xp1( i )*w1( i ) +lreturn_xp2( i )*w2( i ) +

tc ;

else case3_RE( i ) = 0;

end

else case3_RE( i ) = 0;
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end

else case3_RE( i ) = 0;

end

else case3_RE( i ) =0;

end

end

sum_case3_RE_1 =sum(case3_RE);

return_cv1(i1 , j1) = sum_case3_RE_1;

%return block

re1_block = zeros(st ,1);

for i = 1 : st

tt0 = p_t0( i ) ;

tt1 = p_t1( i ) ;

for ib = tt0 : tt1

re1_block( i ) = re1_block( i)+case21_RE(ib );

end

end

return1_block = abs(re1_block );

end

end

%take absolute

abs_r_diff = abs(return_diff );

abs_r_cv = abs(return_cv);

abs_r_cv1 = abs(return_cv1);

R script
script1 : correlation coefficient of stocks, plot the actual, the normalized,

and the ration of the highest correlation coefficient paired stocks prices.
#Correlation Code

rm( list=ls ())

library(kernlab)

#Read data

sh1 <− as .data.frame(read.table(”sh1. txt” , header=TRUE))

sh2 <− as .data.frame(read.table(”sh2. txt” , header=TRUE))

sh3 <− as .data.frame(read.table(”sh3. txt” , header=TRUE))

sh4 <− as .data.frame(read.table(”sh4. txt” , header=TRUE))

data <− cbind.data.frame(sh1, sh2, sh3, sh4)

#Remove data that have NA more tha 2/3 of data

limit <− 2*nrow(data)/3

data <− data[ , which(as .numeric(colSums( ! is .na(data)))> limit )]

#Remove a l l row of NA data

data <− na.omit(data)

# set date of data

Date <− data$Date

#remove Date column

data$Date <− NULL
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cor.out <− cor(normal.data)

write.table(cor.out ,”cor .out. txt”)

#function for finding the highest correlation

mosthighlycorrelated <− function(mydataframe, numtoreport)

{

# find the correlations

cormatrix <− cor(mydataframe)

# set the correlations on the diagonal or

# lower triangle

# to zero ,

# so they wi l l not be reported as the

#highest ones :

diag(cormatrix) <− 0

cormatrix [lower. tri(cormatrix )] <− 0

# flatten the matrix into a dataframe for

#easy sorting

fm <− as .data.frame(as .table(cormatrix))

# assign human−friendly names

names(fm) <− c(”First . Variable” ,

”Second. Variable” ,”Correlation”)

# sort and print the top n correlations

head(fm[order(abs(fm$Correlation) ,

decreasing=T) ,] ,

n=numtoreport)

}

#code for finding

top100.out <− mosthighlycorrelated(normal.data, 100)

#write f i l e

write.table(top100.out ,”top100.out. txt”)

#plot actual data

#save plot

pdf( ’C:/Users/N.␣WowoW␣Ekkarntrong/Dropbox/Apps/Texpad/draft_thesisBook/d_TB_1_PT_2014/

X83X84plotActual.pdf ’ )

plot(data$X8306JP, type = ’ l ’ , col = ’blue ’ , ylim = c(80,2000))

lines(data$X8411JP, type = ’ l ’ , col = ’red ’ )

dev.off()

# calculate return

n <− length(data)

#lrest <− log (prices[−1]/prices[−n])

require(quantmod)

#Delt(a)

lrets .X8306JP <− Delt(data$X8306JP)

lrets .X8411JP <− Delt(data$X8411JP)

#plot return

#save plot

pdf( ’C:/Users/N.␣WowoW␣Ekkarntrong/Dropbox/Apps/Texpad/draft_thesisBook/d_TB_1_PT_2014/

X83X84plotReturns.pdf ’ )

plot( lrets .X8306JP, type = ’ l ’ , col = ’blue ’ )

lines( lrets .X8411JP, type = ’ l ’ , col = ’red ’ )

legend(”topleft” , legend=c(”X8306JP” , ”X8411JP”) ,

col= c(”blue” , ”red”) , lty=1:2, cex=0.8)
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# add a t i t l e and subti t le

title(”Returns”)

dev.off()

#write actual Paired stock data

pair . actual <− cbind(data$X8306JP,data$X8411JP)

colnames(pair . actual) <− c(”X8306JP” , ”X8411JP”)

write.table(pair . actual ,”X8384. actual . txt”)

# Norlmalized data

library(clusterSim)

normal.X8306JP <− data.Normalization(data$X8306JP,type=”n1” ,normalization=”column”)

normal.X8411JP <− data.Normalization(data$X8411JP,type=”n1” ,normalization=”column”)

#Plot normalized

#save plot

pdf( ’C:/Users/N.␣WowoW␣Ekkarntrong/Dropbox/Apps/Texpad/draft_thesisBook/d_TB_1_PT_2014/

X83X84normal.pdf ’ )

plot(normal.X8306JP, type = ”l” , col = ”blue”)

lines(normal.X8411JP, col=”red”)

legend(”topleft” , legend=c(”X8306JP” , ”X8411JP”) ,

col= c(”blue” , ”red”) , lty=1:2, cex=0.8)

title(”Normalized␣data”)

dev.off()

#Plot Ratio

#save plot

pdf( ’C:/Users/N.␣WowoW␣Ekkarntrong/Dropbox/Apps/Texpad/draft_thesisBook/d_TB_1_PT_2014/

X83X84ratio.pdf ’ )

plot(data$X8306JP/data$X8411JP, type = ”l”)

legend(”topleft” , legend=c(”X8306JP/X8411JP”) ,

col= c(”black”) , lty=1:2, cex=0.8)

title(”ratio␣ofX8306JP␣and␣X8411JP”)

dev.off()

script2: simulation of ARIMA, MCMC, and SVR models for X8306JP and
X8411JP with 70-30 ratio
rm( list=ls ())

#Data Section

#+++++++++++++++++++++++++++++++++++++++++++++++++++

#Read data

sh1 <− read.table(”sh1. txt” , header=TRUE)

sh2 <− read.table(”sh2. txt” , header=TRUE)

sh3 <− read.table(”sh3. txt” , header=TRUE)

sh4 <− read.table(”sh4. txt” , header=TRUE)

data <− cbind(sh1, sh2, sh3, sh4)

data <− data[−1]

#Remove data that have NA more tha 2/3 of data

limit <− 2*nrow(data)/3

data <− data[ , which(as .numeric(colSums(

! is .na(data))) > limit )]
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#Remove a l l row of NA data

data <− na.omit(data)

data <− as .matrix(sapply(data, as .numeric))

data <− as .data.frame(data)

index <− 1 : ceiling(length(data[ ,1])*.7)

data. train <− data[index, ]

data. test <− data[−index, ]

#Variables Selection

#+++++++++++++++++++++++++++++++++++++++++++

#X8306JP

X8306JP.model <− lm(X8306JP~ . , data. train)

summary(X8306JP.model)

X8306JP.variable <− c(#”MMMUS”,”ABBSS”,

”ABTUS” , ”AAUS” , ”AXPUS” , ”AMGN” , #”AALLN”,

”ABIBB” ,

#”GIM”,

”TUS” , ”BA.LN” , ”BBVASM” , ”BACUS” , ”BKUS” ,

”BASGR” , ”BAXUS” ,

”BHARTIIN” , ”BHPAU” , ”BP.LN” , ”X5108JP” , ”CVXUS” ,

”X941HK” , ”SGOFP” ,

”CMIG4” , ”COPUS” , ”CSGNVX” , ”DEUS” , ”DBKGR” ,

”DDUS” , ”EOANGR” , ”EBAYUS” ,

”EDPPL” , ”X330HK” , ”FDXUS” , ”FCXUS” , ”GEUS” ,

”GILDUS” , ”GOOGUS” , ”HPQUS” ,

”HSBALN” , ”X13HK” , ”INTCUS” , ”IBMUS” , ”JNJUS” ,

”JPMUS” , #”X6301JP”,

”X066570KS” , ”MCFP” , ”X8411JP” , ”NDAQUS” , ”NABAU” ,

”NG.LN” , ”NWSAUS” ,

”NKEUS” , ”X5401JP” , ”PFEUS” , ”POTCN” , ”PGUS” ,

”RILIN” , ”BBCN” , ”ROSW” ,

”RYCN” , ”X005930KS” , ”SLBUS” , ”SIEGR” , ”GLEFP” ,

”X6758JP” , ”LUVUS” ,

”X4502JP” , ”TEFSM” , ”X6502JP” , ”X7203JP” , ”UCGIM” ,

”UPSUS” , ”UTXUS” ,

”VALE5BZ” , ”VIEFP” , ”VWSDC” , ”VODLN” , ”X8306JP”)

X8306JP.data <− data. train [ , (names(data. train)

%in% X8306JP.variable)]

#X8411JP

X8411JP.model <− lm(X8411JP~ . , data. train)

summary(X8411JP.model)

X8411JP.variable <− c(”MMMUS” , ”ABBSS” , ”ABTUS” ,

”AAUS” , #5”ALVGR”,

”AMXLMM” , ”AMGN” ,

”AALLN” , #9”ABIBB”,

”TUS” , ”BACUS” , ”BKUS” , #”BASGR”,

”BHARTIIN” ,

”BHPAU” , ”BNPFP” , ”BAUS” , ”BP.LN” , ”X5108JP” ,

”X7751JT” ,”CVXUS” , #”X941HK”,

”CSCOUS” , ”CLUS” , ”SGOFP” , ”COPUS” ,

”CSGNVX” , ”DAIGR” , ”DEUS” , ”DDUS” , ”EBAYUS” ,
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”X330HK” ,”FDXUS” , ”GSKUS” , ”GOOGUS” , ”HPQUS” ,

”INTCUS” , ”IBMUS” , ”JNJUS” , #”JPMUS”,

”X6301JP” , ”X066570KS” , ”X8306JP” , #”MONUS”,

”NABAU” , ”NG.LN” , ”NWSAUS” , ”X7974JP” , ”X5401JP” ,

”X6752JP” , ”PETR4BZ” , ”PFEUS” , #”BBCN”,

”ROSW” , ”RYCN” , ”SLBUS” , ”SIEGR” , ”GLEFP” ,

”X6758JP” , ”LUVUS” , ”TEFSM” , ”TSCOLN” , ”TWXUS” ,

”X6502JP” , ”FPFP” , #”X7203JP”,

”UBSNVX” , ”UTXUS” , ”VALE5BZ” , ”VIEFP” , ”VZUS” ,

”VWSDC” , ”VODLN” , ”WMTUS” , ”WFCUS” , ”X8411JP”)

X8411JP.data <− data. train [ , (names(data. train)

%in% X8411JP.variable)]

#SVR Section

#++++++++++++++++++++++++++++++++++++++++++++++++

library(kernlab)

#X8306JP

svr .X8306JP. rbfdot <− ksvm(X8306JP~ . ,X8306JP.data,

kernel = ”rbfdot”)

svr .X8306JP. rbfdot . error <− svr .X8306JP. rbfdot@error

svr .X8306JP. polydot <− ksvm(X8306JP~ . ,X8306JP.data,

kernel = ”polydot”)

svr .X8306JP. polydot . error <− svr .X8306JP.polydot@error

svr .X8306JP. vanilladot <− ksvm(X8306JP~ . , X8306JP.data,

kernel = ”vanilladot”)

svr .X8306JP. vanilladot . error <− svr .X8306JP. vanilladot@error

svr .X8306JP.tanhdot <− ksvm(X8306JP~ . , X8306JP.data,

kernel = ”tanhdot”)

svr .X8306JP.tanhdot. error <− svr .X8306JP.tanhdot@error

svr .X8306JP. laplacedot <− ksvm(X8306JP~ . , X8306JP.data,

kernel = ”laplacedot”)

svr .X8306JP. laplacedot . error <− svr .X8306JP. laplacedot@error

svr .X8306JP. besseldot <− ksvm(X8306JP~ . , X8306JP.data,

kernel = ”besseldot”)

svr .X8306JP. besseldot . error <− svr .X8306JP. besseldot@error

svr . train . error <− cbind(svr .X8306JP. rbfdot . error , svr .X8306JP. polydot . error ,

svr .X8306JP. polydot . error , svr .X8306JP. vanilladot . error ,

svr .X8306JP.tanhdot. error , svr .X8306JP. laplacedot . error ,

svr .X8306JP. besseldot . error)

svr . train . error .min<− min(svr . train . error)

i f (svr . train . error .min == svr .X8306JP. rbfdot . error)

{

svr .X8306JP.predict <− predict(svr .X8306JP. rbfdot , data. test)

}else if (svr . train . error .min == svr .X8306JP. polydot . error) {

svr .X8306JP.predict <− predict(svr .X8306JP. polydot , data. test)

}else if (svr . train . error .min == svr .X8306JP. vanilladot . error) {

svr .X8306JP.predict <− predict(svr .X8306JP. vanilladot , data. test)

}else if (svr . train . error .min == svr .X8306JP.tanhdot. error) {

svr .X8306JP.predict <− predict(svr .X8306JP.tanhdot, data. test)

}else if (svr . train . error .min == svr .X8306JP. laplacedot . error) {

svr .X8306JP.predict <− predict(svr .X8306JP. laplacedot , data. test)

}else if (svr . train . error .min == svr .X8306JP. besseldot . error) {
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svr .X8306JP.predict <− predict(svr .X8306JP. besseldot , data. test)

}

ntest <− length(data. test$X8306JP)

mae. svr .X8306JP <− sum(abs((data. test$X8306JP − svr .X8306JP.predict)/data. test$X8306JP))/ntest

mape. svr .X8306JP <− mae. svr .X8306JP*100

mse. svr .X8306JP <− sum((svr .X8306JP.predict − data. test$X8306JP)^2)/ntest

rmse. svr .X8306JP <− sqrt(mse. svr .X8306JP)

error . svr .X8306JP <− cbind(mae. svr .X8306JP, mape. svr .X8306JP,

mse. svr .X8306JP, rmse. svr .X8306JP)

error . svr .X8306JP

#X8411JP

svr .X8411JP. rbfdot <− ksvm(X8411JP~ . , X8411JP.data,

kernel = ”rbfdot”)

svr .X8411JP. rbfdot . error <− svr .X8411JP. rbfdot@error

svr .X8411JP. polydot <− ksvm(X8411JP~ . , X8411JP.data,

kernel = ”polydot”)

svr .X8411JP. polydot . error <− svr .X8411JP.polydot@error

svr .X8411JP. vanilladot <− ksvm(X8411JP~ . , X8411JP.data,

kernel = ”vanilladot”)

svr .X8411JP. vanilladot . error <− svr .X8411JP. vanilladot@error

svr .X8411JP.tanhdot <− ksvm(X8411JP~ . , X8411JP.data,

kernel = ”tanhdot”)

svr .X8411JP.tanhdot. error <− svr .X8411JP.tanhdot@error

svr .X8411JP. laplacedot <− ksvm(X8411JP~ . , X8411JP.data,

kernel = ”laplacedot”)

svr .X8411JP. laplacedot . error <− svr .X8411JP. laplacedot@error

svr .X8411JP. besseldot <− ksvm(X8411JP~ . , X8411JP.data,

kernel = ”besseldot”)

svr .X8411JP. besseldot . error <− svr .X8411JP. besseldot@error

svr . train . error <− cbind(svr .X8411JP. rbfdot . error ,

svr .X8411JP. polydot . error , svr .X8411JP. polydot . error ,

svr .X8411JP. vanilladot . error , svr .X8411JP.tanhdot. error ,

svr .X8411JP. laplacedot . error , svr .X8411JP. besseldot . error)

svr . train . error .min<− min(svr . train . error)

i f (svr . train . error .min == svr .X8411JP. rbfdot . error)

{

svr .X8411JP.predict <− predict(svr .X8411JP. rbfdot , data. test )

}else if (svr . train . error .min == svr .X8411JP. polydot . error)

{

svr .X8411JP.predict <− predict(svr .X8411JP. polydot , data. test)

}else if (svr . train . error .min == svr .X8411JP. vanilladot . error)

{

svr .X8411JP.predict <− predict(svr .X8411JP. vanilladot , data. test)

}else if (svr . train . error .min == svr .X8411JP.tanhdot. error)

{

svr .X8411JP.predict <− predict(svr .X8411JP.tanhdot, data. test)

}else if (svr . train . error .min == svr .X8411JP. laplacedot . error)

{

svr .X8411JP.predict <− predict(svr .X8411JP. laplacedot , data. test)

}else if (svr . train . error .min == svr .X8411JP. besseldot . error)

{

svr .X8411JP.predict <− predict(svr .X8411JP. besseldot , data. test)
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}

ntest <− length(data. test$X8411JP)

mae. svr .X8411JP <− sum(abs((data. test$X8411JP − svr .X8411JP.predict)/data. test$X8411JP))/ntest

mape. svr .X8411JP <− mae. svr .X8411JP*100

mse. svr .X8411JP <− sum((svr .X8411JP.predict − data. test$X8411JP)^2)/ntest

rmse. svr .X8411JP <− sqrt(mse. svr .X8411JP)

error . svr .X8411JP <− cbind(mae. svr .X8411JP,mape. svr .X8411JP,

mse. svr .X8411JP, rmse. svr .X8411JP)

error . svr .X8411JP

#ARIMA section

#+++++++++++++++++++++++++++++++++++++++++++++

#X8306JP

arima.X8306JP.data <− ts(data. train$X8306JP)

arima.X8306JP.model <− arima(arima.X8306JP.data, order = c(1 ,0 ,0))

arima.X8306JP.predict <− (predict(arima.X8306JP.model, n.ahead = ntest))$pred

mae.arima.X8306JP <− sum(abs((data. test$X8306JP −

arima.X8306JP.predict)/data. test$X8306JP))/ntest

mape.arima.X8306JP <− mae.arima.X8306JP*100

mse.arima.X8306JP <− sum((arima.X8306JP.predict −

data. test$X8306JP)^2)/ntest

rmse.arima.X8306JP <− sqrt(mse. svr .X8306JP)

error .arima.X8306JP <− cbind(mae.arima.X8306JP,

mape.arima.X8306JP, mse.arima.X8306JP,

rmse.arima.X8306JP)error .arima.X8306JP

#X8411JP

arima.X8411JP.data <− ts(data. train$X8411JP)

arima.X8411JP.model <− arima(arima.X8411JP.data, order = c(1 ,0 ,0))

arima.X8411JP.predict <− (predict(

arima.X8411JP.model, n.ahead = ntest))$pred

mae.arima.X8411JP <− sum(abs((data. test$X8411JP −

arima.X8411JP.predict)/data. test$X8411JP))/ntest

mape.arima.X8411JP <− mae.arima.X8411JP*100

mse.arima.X8411JP <− sum((arima.X8411JP.predict −

data. test$X8411JP)^2)/ntest

rmse.arima.X8411JP <− sqrt(mse. svr .X8411JP)

error .arima.X8411JP <− cbind(mae.arima.X8411JP,

mape.arima.X8411JP, mse.arima.X8411JP,

rmse.arima.X8411JP)error .arima.X8411JP

#MCMC section

#++++++++++++++++++++++++++++++++++++++++++++

library(MCMCpack)

#X8306JP

mcmc.X8306JP.model <− MCMCregress( X8306JP~X8411JP, data = data. train)

mcmc.X8306JP.summary<− summary(mcmc.X8306JP.model)

mcmc.X8306JP. intercept <− mcmc.X8306JP.summary$statistics [1]

mcmc.X8306JP.coef <− mcmc.X8306JP.summary$statistics [2]

mcmc.X8306JP.predict <− (data. test$X8411JP *

mcmc.X8306JP.coef)+ mcmc.X8306JP. intercept

mae.mcmc.X8306JP <− sum(abs((data. test$X8306JP −

mcmc.X8306JP.predict)/data. test$X8306JP))/ntest
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mape.mcmc.X8306JP <− mae.mcmc.X8306JP*100

mse.mcmc.X8306JP <− sum((mcmc.X8306JP.predict −

data. test$X8306JP)^2)/ntest

rmse.mcmc.X8306JP <− sqrt(mse.mcmc.X8306JP)

error .mcmc.X8306JP <− cbind(mae.mcmc.X8306JP,

mape.mcmc.X8306JP, mse.mcmc.X8306JP,

rmse.mcmc.X8306JP)error .mcmc.X8306JP

#X8411JP

mcmc.X8411JP.model <−

MCMCregress( X8411JP~X8306JP, data = data. train)

mcmc.X8411JP.summary<− summary(mcmc.X8411JP.model)

mcmc.X8411JP. intercept <− mcmc.X8411JP.summary$statistics [1]

mcmc.X8411JP.coef <− mcmc.X8411JP.summary$statistics [2]

mcmc.X8411JP.predict <− (data. test$X8306JP * mcmc.X8411JP.coef)

+ mcmc.X8411JP. intercept

mae.mcmc.X8411JP <− sum(abs((data. test$X8411JP −

mcmc.X8411JP.predict)/data. test$X8411JP))/ntest

mape.mcmc.X8411JP <− mae.mcmc.X8411JP*100

mse.mcmc.X8411JP <− sum((mcmc.X8411JP.predict −

data. test$X8411JP)^2)/ntest

rmse.mcmc.X8411JP <− sqrt(mse.mcmc.X8411JP)

error .mcmc.X8411JP <− cbind(mae.mcmc.X8411JP,

mape.mcmc.X8411JP, mse.mcmc.X8411JP,

rmse.mcmc.X8411JP)

error .mcmc.X8411JP

#Summary

X8306JP.summary.data <− as .data.frame(cbind(data. test$X8306JP,

svr .X8306JP.predict, arima.X8306JP.predict,

mcmc.X8306JP.predict))

colnames(X8306JP.summary.data) <− c(”Original” , ”SVR” , ”ARIMA” , ”MCMC”)

X8411JP.summary.data <− as .data.frame(cbind(data. test$X8411JP,

svr .X8411JP.predict, arima.X8411JP.predict,

mcmc.X8411JP.predict))

colnames(X8411JP.summary.data) <− c(”Original” , ”SVR” , ”ARIMA” , ”MCMC”)

#Plot X8306JP#save plot

pdf( ’C:/Users/N.␣WowoW␣Ekkarntrong/Dropbox/Apps/Texpad/

draft_thesisBook/d_TB_1_PT_2014/X8306JPplot7030.pdf ’ )

plot(X8306JP.summary.data$Original , type = ”l” ,

ylim = c(300,800),

xlab = ”time(Date)” , ylab = ”Stock␣price”)

lines(X8306JP.summary.data$ARIMA, col=”red”)

lines(X8306JP.summary.data$MCMC, col=”green”)

lines(X8306JP.summary.data$SVR, col=”blue”)

legend(”topleft” , legend=c(”actual␣X8306JP” ,

”ARIMA” , ”MCMC” , ”SVR”) ,

col= c(”black” , ”red” , ”green” , ”blue”) , lty=1:2, cex=0.8)

# add a t i t l e and subti t le

title(”Simulation␣results␣:␣ARIMA,␣MCMC,␣and␣SVR” , ”for␣X8306JP”)

dev.off()

#Plot X8411JP

#save plot

pdf( ’C:/Users/N.␣WowoW␣Ekkarntrong/Dropbox/Apps/Texpad/
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draft_thesisBook/d_TB_1_PT_2014/X8411JPplot7030.pdf ’ )

plot(X8411JP.summary.data$Original , type = ”l” , ylim = c(80,300),

xlab = ”time(Date)” , ylab = ”Stock␣price”)

lines(X8411JP.summary.data$ARIMA, col=”red”)

lines(X8411JP.summary.data$MCMC, col=”green”)

lines(X8411JP.summary.data$SVR, col=”blue”)

legend(”topleft” , legend=c(”actual␣X8411JP” , ”ARIMA” , ”MCMC” , ”SVR”) ,

col= c(”black” , ”red” , ”green” , ”blue”) , lty=1:2, cex=0.8)

# add a t i t l e and subti t le

title(”Simulation␣results␣:␣ARIMA,␣MCMC,␣and␣SVR” ,”for␣X8411JP”)

dev.off()

#considering trend section

#+++++++++++++++++++++++++++++++++++++++++++++++++++++

# set number of data

n <− nrow(data. test)−1

X8306JP. actual <− data. test$X8306JP

# X8306JP

# lag for svr actual && predicted

lag .X8306JP. actual <− diff(X8306JP. actual)

lag . svr .X8306JP <− diff(svr .X8306JP.predict)

#set count vector for count a right direction ;

#ini t i a l value

svr .count. direction <− matrix(0 ,n−1,1)

#for loop

for ( i in 1 : n)

{

i f (lag .X8306JP. actual [ i ] >= 0 && lag . svr .X8306JP[ i ] >= 0){

svr .count. direction [ i ] <− 1

} else if (lag .X8306JP. actual [ i ] < 0 && lag . svr .X8306JP[ i ] < 0){

svr .count. direction [ i ] <− 1

} else

svr .count. direction [ i ] <− 0

}

# lag for mcmc predicted

lag .mcmc.X8306JP <− diff(mcmc.X8306JP.predict)

#set count vector for count a right direction ;

#ini t i a l value

mcmc.count. direction <− matrix(0 ,n−1,1)

#for loop

for ( i in 1 : n)

{

i f (lag .X8306JP. actual [ i ] >= 0 && lag .mcmc.X8306JP[ i ] >= 0){

mcmc.count. direction [ i ] <− 1

} else if (lag .X8306JP. actual [ i ] < 0 && lag .mcmc.X8306JP[ i ] < 0){

mcmc.count. direction [ i ] <− 1

} else

mcmc.count. direction [ i ] <− 0

}

# lag for arima predicted

lag .arima.X8306JP <− diff(arima.X8306JP.predict)

#set count vector for count a right direction ;
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#ini t ia l value

arima.count. direction <− matrix(0 ,n−1,1)

#for loop

for ( i in 1 : n)

{

i f (lag .X8306JP. actual [ i ] >= 0 && lag .arima.X8306JP[ i ] >= 0){

arima.count. direction [ i ] <− 1

} else if (lag .X8306JP. actual [ i ] < 0 && lag .arima.X8306JP[ i ] < 0){

arima.count. direction [ i ] <− 1

} else

arima.count. direction [ i ] <− 0

}

right . direction .X8306JP <− cbind(sum(arima.count. direction ) ,

sum(mcmc.count. direction ) , sum(svr .count. direction ))

percent . direction .X8306JP <− right . direction .X8306JP/(n−1)*100

# X8411JP

X8411JP. actual <− data. test$X8411JP

# lag for svr actual && predicted

lag .X8411JP. actual <− diff(X8411JP. actual)

lag . svr .X8411JP <− diff(svr .X8411JP.predict)

#set count vector for count a right direction ;

#ini t i a l value

svr .count. direction <− matrix(0 ,n−1,1)

#for loop

for ( i in 1 : n)

{

i f (lag .X8411JP. actual [ i ] >= 0 && lag . svr .X8411JP[ i ] >= 0){

svr .count. direction [ i ] <− 1

} else if (lag .X8411JP. actual [ i ] < 0 && lag . svr .X8411JP[ i ] < 0){

svr .count. direction [ i ] <− 1

} else

svr .count. direction [ i ] <− 0

}

# lag for mcmc predicted

lag .mcmc.X8411JP <− diff(mcmc.X8411JP.predict)

#set count vector for count a right direction ;

#ini t i a l value

mcmc.count. direction <− matrix(0 ,n−1,1)

#for loop

for ( i in 1 : n)

{

i f (lag .X8411JP. actual [ i ] >= 0 && lag .mcmc.X8411JP[ i ] >= 0){

mcmc.count. direction [ i ] <− 1

} else if (lag .X8411JP. actual [ i ] < 0 && lag .mcmc.X8411JP[ i ] < 0){

mcmc.count. direction [ i ] <− 1

} else

mcmc.count. direction [ i ] <− 0

}

# lag for arima predicted

lag .arima.X8411JP <− diff(arima.X8411JP.predict)

#set count vector for count a right direction ;

#ini t i a l value
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arima.count. direction <− matrix(0 ,n−1,1)

#for loop

for ( i in 1 : n)

{

i f (lag .X8411JP. actual [ i ] >= 0 && lag .arima.X8411JP[ i ] >= 0){

arima.count. direction [ i ] <− 1

} else if (lag .X8411JP. actual [ i ] < 0 && lag .arima.X8411JP[ i ] < 0){

arima.count. direction [ i ] <− 1

} else

arima.count. direction [ i ] <− 0

}

right . direction .X8411JP <− cbind(sum(arima.count. direction ) ,

sum(mcmc.count. direction ) , sum(svr .count. direction ))

percent . direction .X8411JP <− right . direction .X8411JP/(n−1)*100

#+++++++++++++++++++++++++++++++++++++++++++++++

library(AICcmodavg)

library(MuMIn)

#++++++++++++++++++++++++++++++++++++++++++++++++

#SVR

#X8306JP

a. svr .X8306JP <− AIC(lm(X8306JP~ . , data. train ))

b. svr .X8306JP <− BIC(lm(X8306JP~ . , data. train ))

r . svr .X8306JP <−

summary(lm(X8306JP~ . , data. train ))$r .squared

info . svr .X8306JP <− cbind(a. svr .X8306JP,

b. svr .X8306JP, r . svr .X8306JP)

#X8411JP

a. svr .X8411JP <− AIC(lm(X8411JP~ . , data. train ))

b. svr .X8411JP <− BIC(lm(X8411JP~ . , data. train ))

r . svr .X8411JP <−

summary(lm(X8411JP~ . , data. train ))$r .squared

info . svr .X8411JP <− cbind(a. svr .X8411JP,

b. svr .X8411JP, r . svr .X8411JP)

#ARIMA

#X8306JP

a.arima.X8306JP <− AIC(arima.X8306JP.model)

#ac.arima.X8306JP <− AICc(arima.X8306JP.model)

b.arima.X8306JP <− BIC(arima.X8306JP.model)

r .arima.X8306JP <− 0

info .arima.X8306JP <− cbind(a.arima.X8306JP,

b.arima.X8306JP, r .arima.X8306JP)

#X8411JP

a.arima.X8411JP <− AIC(arima.X8411JP.model)

#ac.arima.X8411JP <− AICc(arima.X8411JP.model)

b.arima.X8411JP <− BIC(arima.X8411JP.model)

r .arima.X8411JP <− 0

info .arima.X8411JP <− cbind(a.arima.X8411JP,

b.arima.X8411JP, r .arima.X8411JP)

#MCMC

#X8306JP

a.mcmc.X8306JP <− AIC(lm(X8306JP~X8411JP,
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data. train ))

ac .mcmc.X8306JP <− AICc(lm(X8306JP~X8411JP,

data. train ))

b.mcmc.X8306JP <− BIC(lm(X8306JP~X8411JP,

data. train ))

r .mcmc.X8306JP <−

summary(lm(X8306JP~X8411JP, data. train ))$r .squared

info .mcmc.X8306JP <− cbind(a.mcmc.X8306JP,

ac .mcmc.X8306JP,

b.mcmc.X8306JP, r .mcmc.X8306JP)

#X8411JP

a.mcmc.X8411JP <− AIC(lm(X8411JP~X8306JP,

data. train ))

ac .mcmc.X8411JP <− AICc(lm(X8411JP~X8306JP,

data. train ))

b.mcmc.X8411JP <− BIC(lm(X8411JP~X8306JP,

data. train ))

r .mcmc.X8411JP <−

summary(lm(X8411JP~X8306JP, data. train ))$r .squared

info .mcmc.X8411JP <− cbind(a.mcmc.X8411JP,

ac .mcmc.X8411JP,

b.mcmc.X8411JP, r .mcmc.X8411JP)

#+++++++++++++++++++++++++++++++++++++++++++

## Normality tests

# The statement performing Shapiro−Wilk test

# is shapiro . test ()and

# i t supplies W stat is t ic and the pvalue :

shapiro . test (data$X8306JP)

shapiro . test (data$X8411JP)

library( tseries ) ## package tseries loading

jarque . bera . test(data$X8306JP)

library(nortest) ## package loading

# performs Shapiro−Francia test

sf . test (data$X8306JP)

# performs Anderson−Darling test

ad. test (data$X8306JP)

adf . test (data$X8306JP)

# performs Li l l ie fors test

l i l l i e . test (data$X8306JP)

# performs Pearson’ s chi−square test

pearson. test (data$X8306JP)

library(fUnitRoots)

jarque . bera . test(data$X8411JP)

# performs Shapiro−Francia test

sf . test (data$X8411JP)

# performs Anderson−Darling test

ad. test (data$X8411JP)

adf . test (data$X8411JP)

# performs Li l l ie fors test

l i l l i e . test (data$X8411JP)

# performs Pearson’ s chi−square test

pearson. test (data$X8411JP)
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