
1 

 

 

CHAPTER I 

INTRODUCTION      

 
1.1  Introduction and Motivation 

   Many problems in actuarial science involve the building of models that can be 

used to forecast or predict insurance costs. Modeling is an important procedure for 

actuaries so that they can estimate the degree of uncertainty as to when a claim will be 

made and how much will be paid. In particular, the modeling of claims and 

outstanding claims lead to the pricing of insurance premiums and an estimation of 

claim reserve, respectively. The most useful approach to uncertainty representation is 

through probability, so we will concentrate on probability models.   

Losses depend on two random variables, i.e., the number of losses and the 

amount of loss which occur in a specified period. The number of losses (claim 

number) is referred to as the frequency of loss (claim frequency) and its probability 

distribution is called the frequency distribution. The amount of loss (claim size) is 

referred to as the severity of loss (claim severity) and its probability distribution is 

called the severity distribution. Loss distribution and its modeling are described in 

detail in the book of Klugman (2008) and in the papers of  Burnecki, Janczura, and Weron 

(2010). A building of a credible model for claim severity is usually more difficult than 

for claim frequency. Thus we are interested in claim severity, that is, the severity 

distribution will be considered in this study.  

The mixture of distributions is sometimes called compounding, which is 

extremely important as it can provide a superior fit. A successful use of this technique 
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is illustrated in Hewitt and Lefkowitz (1979). In the 1960s and 1970s, finite mixture 

models appeared in the statistical literature and they proved to be useful for modeling 

discrete unobserved heterogeneity in the population. Since there are many different 

modes of claim possibilities, a finite mixture model should work well. 

   An Expectations Maximization (EM) algorithm is provided to fit the model 

that introduces unobserved indicators with the goal of maximizing the complete 

likelihood functions. The EM algorithm is also applicable for parameter estimation of 

mixture models. For more details, see Dempster, Laird and Rubin (1977), McLachlan 

and Peel (2000), Aitkin and Rubin (1985) and Hogg et al. (2005). 

   The bootstrap process is a tool for fitting and it is not complicated to 

implement. Usually, the bootstrap process involves resampling with replacements 

from the residual or the data themselves. We apply the bootstrap technique to 

recalculate the estimated parameters for model fitting. For more details, see Efron and 

Tibshirani (1993).  

   An insurance contract is a risk exchange between two parties, i.e., the insurer 

and the policyholder (insured). The insurer promises to pay for the financial 

consequences of the claims as the policyholder pays a fixed premium. In this study, 

the term of risk, in insurance, refers to a loss (claim) variable that quantifies the 

potential loss (claim) amount associated with an insurance contract. The insurer has 

understanding to price the premium to cover the uncertainty losses that will  occur in 

the future. So the insurance pricing is therefore important to construct the model for 

premium calculation.  

  Risk is often used to mean uncertainty which creates both problems and 

opportunities for business and individuals. Pure risk exists when there is uncertainty 
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as to whether loss will occur. Speculative risk exists when there is uncertainty about 

an event that could produce either a profit or a loss. In insurance risk is pure risk that 

can be insurable, while most of financial risks tend to have the characteristics of 

speculative risks that are uninsurable. The definitions and properties of risks are 

explained in the book of James, Robert and David (2005). The risk measures and its 

classification are described in the book of McNeil, Frey and Embrechts (2004) and the 

paper of Dhaene et al. (2006), in detail. The summarization of risk measure families is 

shown in Table C.1 of Appendix C. The premium calculation principle is the one of 

risk measures families that we consider for insurance pricing in this study.    

   As for insurance premium, the insurer needs not only price it to cover the 

losses but also to make it competitive in the market. Traditionally, the expected value 

and the standard deviation are the most widely used to obtain the premium which 

tends to make it be higher than needed. To provide a competitve premium in the 

market, we work in the opposite direction. That is, we are interested in how much the 

premium should be discounted relative to the market price of risk. The premium 

which is calculated depending on both risk and market conditions, is called the 

economic premium. Then we study economic premium principles for insurance 

pricing.  

 

1.2 Historical Review  

Claim modeling: Many authors have proposed and compared the parameter 

estimation methods for fitting of claim severity. Some authors investigate some 

special distributions of the claim severity and apply them to calculate the insurance 

premium. Grzegorz and Richard (2005) proposed the modeling of hidden exposures in 
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claim severity of normal distribution via the EM algorithm for 2, 3 and 4 components, 

using the R program. The actual auto bodily injury liability claims closed in 

Massachusetts in 2001 were applied for the model. Vytaras, Bruce and Ricardas 

(2009) suggested the method of trimmed moments (MTM) in the case of loss 

distribution of Lognormal and Pareto and they analyzed real data sets concerning 

hurricane damage in the United States. Recently, Mohamed, Ahmad and Noriszura 

(2010) investigated a model of claim severity which has compound Poisson-Pareto 

distribution, by simulation, and they used it to calculate insurance premiums under the 

retention limit. 

  Insurance pricing: In the actuarial literature, there have been many discussions 

on risk measures of financial and insurance risks in the context of premium 

calculation principles. Wang’s premium principle has been discussed by many 

authors, e.g., Wang (1995; 1996), Wang, Young and Panjer (1997) and Young (1999). 

In Wang (2000), the author proposed a pricing method based on the following 

transform: 

1( ) ( ( ))*F x F x  

where  is the standard normal cumulative distribution and ( )F x is the cumulative 

distribution function (CDF) of a risk interest. The key parameter  is called             

the market price of risk. The transform is now better known as the Wang transform 

among financial engineers and risk managers. Recently, Kijima and Muromachi 

(2008) presented an extension of the Wang transform that is consistent with 

Bühlmann’s pricing formula and proposed a new probability transform which is 

related to the Student’s t  distribution for pricing of financial and insurance risks.   
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  The purpose of this study is to consider the claim modeling for finite mixture 

Lognormal distributions and the pricing of insurance premiums based on a new property  

transform related to finite mixture Lognormal distributions.  

 

1.3 Objective and Overview of the Thesis 

The purpose of this study is to find a statistical model for the claim modeling 

and insurance pricing. For claim modeling, we shall find a model that is fitted to the 

claim data. Two kinds of distributions are usually considered: one for the amounts of 

individual claims and the other for amounts of aggregate claims. We are interested in 

the amount of individual claims. In insurance companies, there are 2 types of claim 

data recording, i.e., individual and group data. We model the individual claim data in  

this study. A finite mixture of Lognormal distributions is fitted to the data and the 

estimated parameters for the model are calculated by the EM algorithm. We also use 

the bootstrap technique to fit the data and show that the bootstrap sample for 

observation and residual can be applied to the estimated parameters. 

 In insurance pricing; we study the premium calculation principle and propose a 

new transform, called the Log-transform that is related to the finite mixture of 

Lognormal distributions. The premium shall be calculated based on Log-transform 

and compared with premiums obtained by other methods.   

 Our work is organized as follows: In Chapter II, we present preliminaries 

which are useful for claim modeling and insurance pricing, some mathematical and 

statistical background are also shown in this section. In Chapter III, we present the 

claim modeling. That is, we present the statistical modeling for a finite mixture of 

Lognormal distributions, the EM algorithm is explained and the bootstrap technique is 
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demonstrated. We have performed numerical experiments of empirical data for fitting 

by the finite mixture of Lognormal distributions. An application with actual claim data 

set is given in this chapter. In Chapter IV, we present the insurance premium 

calculation which is price based on the Log-transform related to the finite mixture 

Lognormal distributions. We show that the Log-transform can be derived from 

Bühlmann’s economic premium principle. The insurance pricing based on Log-

transform is applied to the actual claim data set. The conclusions, discussion and 

further research are shown in Chapter V.  
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CHAPTER II 

PRELIMINARIES  

 

 In this section, the concepts and theories of some mathematical and statistical 

material are presented that is useful for the claim modeling and insurance pricing. 

Some of the probabilistic tools are described in Appendix B.   

 

2.1  Random Variables   

  Losses of insurance are losses caused by occurrences of unexpected events. 

Examples of insured events and their consequences are damage to property and 

casualties by fire, theft, flood, hail, accident, disability or death (loss of future income 

and support), illness (cost of medical treatment) and personal injury resulting from 

accidents or medical malpractice (cost of treatment and personal suffering).  

  Mostly, actuaries are interested in some consequences of random outcomes. 

For example, they are concerned with the amount which the insurance company will 

pay for claim possibilities. We can think of them as functions mapping insured events 

into the real line  (claim amount). Such functions are called random variables 

provided they satisfy certain desirable properties, precisely stated in the following 

definition:  

Definition 2.1. If  is a given set, then a - algebra  on  is a family  of 

subsets of  with the following properties:   

 (i)  

 (ii) cF F , where \cF F  is the complement of F  in  
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 (iii)   1 2
1

, ,... : i
i

A A A A  

 The pair ( , )  is called a measurable space. A probability measure P  on a 

measurable space ( , )  is a function : [0,1]P  such that  

 (a) ( ) 0P , ( ) 1P  

 (b) if 1 2, ,...A A  and 1{ }i iA  is disjoint (i.e., i jA A  if i j ) then 

1 1

( )i i
i i

P A P A . 

 The triple ( , , )P  is called a probability space.  

 The subsets A  of  which belong to  are called - measurable sets. In a 

probability context these sets are called events and we use the interpretation  

( )P A = “ the probability that the event A  occurs” 

 If ( , , )P  is a given probability space, then a function : nY  is called 

- measurable if  

1( ) : { ; ( ) }Y U Y U  

for all open sets nU .  

 If  : nX  is any function, then the - algebra X  generated by X  is 

the smallest - algebra on  containing all the sets 

1( )X U  ; nU  open.  

That is  
1{ ( ); }X X B B , where  is the Borel - algebra on n . 

  A random variable X  is an - measurable function mapping  to the real 

numbers, i.e., :X  is such that 
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1(( , ])X x   for any x , 

where 1(( , ]) { | ( ) }X x X x . Every random variable induces a 

probability measure X  on , defined by  

1( ) ( ( ))X B P X B .  

X  is called the distribution of X . 

  The actuary deals with objects such as random variables. An example of a 

random variable is the amount of a claim associated with the occurrence of an 

automobile accident.  

 

2.2  Distribution Functions 

   To each random variable X  is associated a function XF  called the distribution 

function of X  or the cumulative distribution function (CDF) of X . The distribution 

XF  does not indicate what is the actual outcome of X , but shows how the possible 

values for X  are distributed. The CDF of the random variable X  is defined as  

1( ) [ (( , ])] [ ]XF x P X x P X x , x . 

( )XF x  represents the probability that the random variable X  assumes a value that is 

less than or equal to x . If X  is the total amount of claims generated by some 

policyholder, ( )XF x  is the probability that this policyholder produces a total claim 

amount of at most x  Thai Baht.  

  Any distribution function F  has the following properties:  

(i)  F  is nondecreasing , i.e., If x y  then ( ) ( )F x F y . 
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(ii) lim ( ) 0
x

F x  and lim ( ) 1
x

F x . 

(iii) F  is right-continuous, that is, 
0

lim ( ) ( )
h

F x h F x  for all x . 

Definition 2.2. A random variable X  is called discrete if it takes values in some 

countable subset 1 2{ , ,...}x x  of . The discrete random variable X  has probability 

mass function : [0,1]f  given by  

( ) ( )f x P X x . 

Definition 2.3. A random variable X  is called continuous if its distribution function 

can be expressed as  

( ) ( )
x

F x f u du   ;  x , 

for some integrable function : [0,1]f  called the probability density function (PDF) 

of X .  

Definition 2.4. Suppose that , 1,2,...,iX i n  are random variables on a probability 

space ( ), ,P . They can be composed to a random vector in n  is defined by  

1 2( , ,  ...,  )nX X XX . 

Definition 2.5. The expectation of a continuous random variable X  with density 

function f  is given by  

[ ] ( )E X x f x dx  

whenever this integral exists.  
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Definition 2.6. The variance of a continuous random variable X  with density 

function f  is given by  

2[ ] [( [ ]) ]Var X E X E X . 

We can rewrite as            2 2[ ] [ ] ( [ ])Var X E X E X .  

Theorem 2.1. If X  has density function f  with ( ) 0f x  when 0x , and 

distribution function F , then the expected value of X  is   

0

[ ] [1 ( )]E X F x  dx . 

Proof:       

          

0 0

1 ( ) ( )F x  dx P X x dx  

               

0

( )
y x

f y dy dx  

               

0 0

( )
y

f y dx dy  

                

0

( 0) ( )y f y dy  

                

0

( )y f y dy  

Conclusion that 

0

[ ] [1 ( )]E X F x dx . 
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Definition 2.7. Let X  be a continuous random variable with density function f . The 

moment generating function (MGF) of the random variable X  is the function 

: [0, )M  given by ( ) ( )tX
XM t E e . That is,  

( ) ( ) ( )tX tx tx
XM t E e e dF x e f x dx . 

Example. If 2~ ( , )X N  then 2 21
exp

2
rXE e r r . In the special case 

when  ~ 0,1X N   we have  ( ) tX
XM t E e  = 

2 2
e
t

.   

 

2.3  Lognormal Distribution 

 Lognormal distribution is useful as a model for the claim size distributions.    

A random variable X  is said to have the Lognormal distribution with parameters  

and  if  lnY X  has the normal distribution with mean  and standard deviation 

. We assume that the random variable X  representing claim size has the Lognormal 

distribution with parameters  and .  

  Assume that X  Lognormal( , )  , abbreviated X  ( , )LN . 

CDF     :   
ln

( )X

x
F x ;    ,   0  and 0x . 

 PDF       :    

2

2

ln1
( ) exp

22
X

x
f x

x
  

Moment :   [ ]kE X  = 2 21
exp

2
k k  
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2.4 Uniform Distribution 

 The random variable X  has the uniform distribution with parameters  and 

, abbreviated ( , )X Uni , if its density function is given as follows:  

 PDF       :    

 elsewhere. 

1
  , 

( )( )   ,   .

0          

X

x
f x   

 

 

Figure 2.1  The PDF of the Lognormal distribution. 
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Example: (0,1)X Uni .  

 PDF       :    

 elsewhere.

1  , (0,1)
( )

0  
X

x
f x  

CDF     :   

 0   if <0

( )     if 0 <1

 1   if 1.

X

x

F x x x

x

 

 Lemma 2.1. Suppose X  has a continuous and strictly increasing CDF F . Then 

( )F X  has the uniform distribution,  

( ) (0,1)F X Uni . 

Proof:  

Let (0,1)u .     

            1 1[ ( ) ] [ ( ) ( )]P F X u P F F X F u  

             1[ ( )]P X F u       

             1( ( ))F F u     

             u .    

The lemma has been proved.  

  Note that above we have used:   

  (1)  F  is strictly increasing and continuous 1 : (0,1)F  exists. 

  (2)  1( ( ))F F x x , x . 

  (3)  1( ( ))F F x x , (0,1)x . 
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Corollary 2.1. Let X  be a random variable with continuous and strictly increasing 

CDF F  and  be the standard normal distribution. If 1 ( )V F X , then V  has 

distribution , i.e.,  

( ) ( )P V x x . 

Proof:  

Let x , one has:         

       1( ) [ ( ( ) ]P V x P F X x  

             [ ( ) ( )]P F X x . 

By Lemma 2.1, ( ) (0,1)F X Uni .  

Conclusion that  

( ) ( )P V x x ,  (0,1)V N . 

      

2.5  Mixture Models  

 A mixture model is a discrete or continuous weighted combination of 

distributions and represents a heterogeneous population comprised of two or more 

distinct subpopulations. The source of heterogeneity could be gender, age, mode of 

benefit payment, etc.  

 

2.5.1 The Finite Mixture Models  

 A finite mixture model allows us to combine two or more characteristics into 

one model. It can be represented by a probability density function (PDF) of the form:   

1 1( ) ( ) ( )k kf x f x f x      
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with  x , 0j   for 1,  ...,  j k   and  1 1k . 

All ()kf  are PDF (either continuous or discrete). The k  are called the mixing 

weights (mixing values) and the ( )kf x  are called the components, k  is the number of 

component distributions of the mixture. In most situations, the ()kf  have specified 

parametric forms:  

1 1 1( )  ( | )  ( | )k k kf x f x f x , 

where j  denotes the vector of parameters in density ()jf  for 1,  ...,  j k .  

 

2.6 Random Vector and Covariance 

Definition 2.8. The joint distribution function of random variables X  and Y  is the 

function 2: [0,1]F  given by  

( , ) ( , )F x y P X x Y y . 

Definition 2.9. The random variables X  and Y  are (jointly) continuous with joint 

probability density function 2: [0, ]f  if  

( , ) ( , )
y x

v u

F x y f u v dudv , for each ,x y .  

 From here on, let X , Y  be random variables with joint PDF ( , )f x y . Then the 

marginal distribution functions of X  and Y  are 

( ) ( ) lim ( , )X y
F x P X x F x y  and  ( ) ( ) lim ( , )Y x

F y P Y y F x y , 

respectively. Hence,  
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( ) ( , )
x

XF x f x y dydx , ( ) ( , )
y

YF y f x y dxdy  

and it follows that the marginal density functions of X  and Y  are  

( ) ( , )Xf x f x y dy  and ( ) ( , )Yf y f x y dx , respectively.  

Definition 2.10. Suppose that 2:g  is a continuous function. If X  and Y  are 

continuous random variables with joint probability density function f , then the 

expected value of the random variable ( , )g X Y  is given by  

( , ) ( , ) ( , )E g X Y g x y f x y dx dy . 

Definition 2.11. If X  and Y  are random variables, the covariance of X  and Y  is  

[ , ] ( [ ])( [ ])Cov X Y E X E X Y E Y . 

It can be rewritten as     

[ , ] [ ] [ ] [ ]Cov X Y E XY E X E Y . 

The correlation (coefficient) of X  and Y is 

[ , ] [ , ]
[ , ]

[ ] [ ] X Y

Cov X Y Cov X Y
Corr X Y

Var X VarY
 

as long as the variances are non-zero.  

Lemma 2.2. Let V  be a random variable which has the standard normal distribution, 

(0,1)V N . Then for every , [ , ]CovV V .  

Proof:        

( , ) [ ( )] [ ] [ ]Cov V V E V V E V E V  
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                      [ , ]Cov V V  2[ ] [ ] [ ]E V E V E V  

                                 2 2[ [ ] ( [ ]) ]E V E V  

                      [ ]Var V  

            . 

Theorem 2.2. Suppose that 1X  and 2X  are normal and independent. Then 1 2X X  

is normal.  

Lemma 2.3. For 1,...,j k , suppose that random variables jX  are  independent and 

let :jg , be continuous functions. Then the random variables ( )j jg X , 

1,...,j k  are  also independent.  

Definition 2.12. Let random variables ( , )X Y  have the joint PDF  

2

222

2
1 1

( , ) exp
2(1 )2 1

X X Y

X X Y

YX Y

Y

x x y

f x y
y

, 

where x , y , 
X

, 
Y

, ,  0X X
 

and 1 1 . Then ,X Y  are said to have a bivariate normal distribution, and 

[ ] XE X , [ ] YEY , 
2[ ] XVar X , 

2[ ] YVarY , [ , ] X YCov X Y  and 

[ , ]Corr X Y . 

Definition 2.13. The joint moment generating function of ( , )X Y  is defined by  

1 2
, 1 2( , )

t X t Y
X YM t t E e   

and the moment generating function (MGF) for the bivariate normal distribution is 
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2 2 2 2
, 1 2 1 2 1 1 2 2

1
( , ) exp ( 2 )

2X Y X Y X X Y YM t t t t t t t t , 

where  [ ] XE X , [ ] YEY , 2[ ] XVar X , 2[ ] YVarY , [ , ] X YCov X Y   

and [ , ]Corr X Y . 

Lemma 2.4. Suppose ,X Y  is bivariate normal then 

2

, ( , 1) exp [ ] [ ] [ , ]
2

Y
X Y

s
M s E e sE X Var X sCov X Y . 

Proof:  

By MGF for the bivariate normal distribution, one gets  

   2 2 2 2
,

1
( , ) exp ( 2 )

2X Y X Y X X Y YM s t s t s st t . 

2 2 2
,

1
( , 1) exp ( 2 )

2X Y X Y X X Y YM s s s s  

           
2 1

exp [ ] [ ] [ ] [ ] )
2 2 X Y

s
sE X Var X EY VarY s  

           
2 1

exp [ ] [ ] [ ] [ ] [ , ]
2 2

s
sE X Var X EY VarY sCov X Y   

           
21

exp [ ] [ ] exp [ ] [ ] [ , ]
2 2

s
EY VarY sE X Var X sCov X Y .  

The MGF of the univariate random variable of normal distribution is 

   2 21
( ) ( ) exp

2Y Y Ys M s s s .            (2.5) 

If 1s , then  21
( 1) ( 1) exp [ ]

2
Y

Y Y YM E e .  

Conclusion that  
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2

, ( , 1) exp [ ] [ ] [ , ]
2

Y
X Y

s
M s E e sE X Var X sCov X Y .       

 

Lemma 2.5. Suppose that ( , )X Y  is jointly normally distributed. Then 

( ) ( [ , ])Y YE e f X E e E f X Cov X Y  

for any ( )f x  for which the above expectation exists.  

Proof:   

Let ( , )x y  be the joint density of ( , )X Y  and define 

      ( ) ( , )y
X x e x y dy   , x .  

Then    

( ) ( ) ( , )Y yE e f X e f x x y dxdy  ( ) ( )Xf x x dx . 

Denoting the MGF of ( , )X Y  by   

 ( , ) sX tYs t E e  

one obtains that     

    ( , 1) ( )sX Y sx
Xs E e e x dx  .            (2.6) 

Since 

 ( , 1)sX YE e s , ( , 1)X YM s sX YE e e  

and as ( , )X Y  is bivariate normally distributed, applying Lemma 2.4 it follows that  
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2

( , 1) exp [ ] [ ] [ , ]
2

Y s
s E e sE X Var X sCov X Y .             (2.7)  

Next, we consider  

2

exp [ ] [ ] [ , ]
2

s
sE X Var X sCov X Y  of Eq. 2.7. 

For any random variable [ , ]X Cov X Y , its mean and variance are  

[ [ , ]] [ ] [ , ]E X Cov X Y E X Cov X Y  

and  

2[ [ , ]] [ ] XVar X Cov X Y Var X . 

Since 

{ [ , ]}
[ , ]( ) s X Cov X Y

X Cov X YM s E e 21
exp ( [ ] [ , ]) [ ]

2
s E X Cov X Y s Var X  

then Eq. 2.7 can be written as  

      
{ [ , ]}

( , 1)
s X Cov X YYs E e E e .              (2.8) 

Consider Eq. 2.6 and Eq. 2.8, one gets  

  
{ [ , ]}s X Cov X YYE e E e ( )sx

Xe x dx  

    
{ [ , ]}s X Cov X Y

E e
( )

[ ]

sx X
Y

x
e dx

E e
. 

Let   [ , ]Cov X Y a  and x u a .  

Then we get that  

    
( )s X aE e ( ) ( )

[ ]

s u a X
Y

u a
e du

E e
. 
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Thus, the density function of the random variable ( )X a  is  

( )X
Y

u a

E e
. 

We have seen that  

( )YE e f X  ( ) ( )Xf x x dx .  

Then we obtain that  

 ( )YE e f X
( )

( )Y X
Y

x
E e f x dx

E e
 

           
( )

( )
[ ]

Y X
Y

u a
E e f u a du

E e
 

           ( )YE e E f X a . 

We conclude that   

( ) ( [ , ])Y YE e f X E e E f X Cov X Y . 

 

2.7 Equilibrium Price 

2.7.1 A Model for the Market    

    The economic premiums are not only depending on the risk but also on market 

conditions. We can describe the risk by a random variable X  and the market 

conditions by a random variable Z ; such as an aggregate risk, collective wealth, 

correlation and etc.  
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 In the market we are considering agents 1 2j , ,..., n . They constitute buyers 

of insurance, insurance companies or reinsurance companies. Each agent j  is 

characterized by his 

  (i)   utility function ( )ju x  with first derivative and second derivative of ( )ju x  

are ( ) 0ju x  and ( ) 0ju x , respectively, and   

  (ii)  initial wealth jw . 

 The risk aspect is modeled by a finite (for simplicity) probability space with 

states 1,  2,...,  s S  and probabilities s  of state s  happening, i.e.,  

1
1

S

s
s

. 

  The states s  can be described as follows:  

 (a)  Consider a whole insurance business; states are lines of insurance business 

such as the insurance of fire, motor, automobile, marine, health and etc. The amount 

of claims are produced from each line of business.  

 (b) Consider one line of business. For example, in automobile insurance; states 

may be the type of coverage such as type 1 (comprehensive cover), type 2 (third party 

fire and theft cover) and type 3 (third party cover).  

 (c) Consider one type of coverage.  For example, in type 1 (comprehensive 

cover) of automobile insurance, states are loss of properties, accidental benefits and 

third party coverage.  

 Each agent j  in the market has an original risk function ( )jX s ; the payment 

caused to j  if s  is happening. He is buying an exchange function ( )jY s ; payment  
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received by j  if s  is happening. The notion of price for this purchase is given by a 

vector  

1 2( ,  ,...,  )Sp p pp  

and 

Price
1

[ ] ( )
S

j s j
s

Y p Y s . 

Hence sp  is the price for one unit of conditional money and 
1

1
S

s
s

p  .  

Definition 2.14. 1 2( ,  ,...,  )nY Y YY  is a risk exchange (REX) if 
1

0
n

j
j

Y s  

for all 1,2,...,s S . 

 

2.7.2 Equilibrium Price  

Definition 2.15. The pair ( , )p Y   is called in equilibrium of the market if  

 (i)  For all j , 
1

( ) ( ) ( )
S

s j j j j s j
s

u w X s Y s pY s  = max for all 

possible choices of exchange functions jY .  

 (ii)  
1

( ) 0
n

j
j

Y s  for all 1,2,...,s S . 

If condition (i) and (ii) are satisfied, p  is called an equilibrium price and Y  is called 

an equilibrium risk exchange (REX).  

 The notion of equilibrium price can be extended to an arbitrary probability 

space ( , , )P  where the risk function ( )jX s  and exchange function ( )jY s  will be 
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represented by the random variables ( )jX  and ( )jY , , respectively. The 

notion of price is given by a function :  and the price [ ]jY  is defined by  

Price [ ] ( ) ( ) ( )j jY Y   dP .   

Definition 2.16. The pair ( , )jY  is called in equilibrium if  

 (i)  For all j , Price[ ( ( ))]j j j j jE u w X Y Y  is a maximum among all 

possible choices of the exchange variables jY  and  

 (ii)  
1

( ) 0
n

j
j

Y  for all .  

 In the equilibrium, jY  is called the equilibrium risk exchange and  is called 

the equilibrium price density.  

 

2.7.3 Bühlmann’s Equilibrium Pricing Model  

Definition 2.17. (Bühlmann’s equilibrium pricing model). 

Each agent j  has an exponential utility function  

1
( ) 1 exp( )j j

j

u x x . 

So that ( ) exp( )j ju x x ,   j  stands for the risk aversion and 
1

j

 stands for the 

risk tolerance unit. Then the equilibrium price density satisfies:  

( )e  
( ( ))

[ ] 

Z

Z

e

E e
, 
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where 
1

( ) ( )
n

j
j

Z X  is the aggregate risk (the sum of original risk functions in 

the market) and  satisfies   

1

1 1n

j j

. 

The parameters j  can be seen as the risk aversion index of the thj agent.  

Lemma 2.6. The equilibrium price for any risk X  of Bühlmann’s equilibrium pricing 

model is  

[ ]
( , )

[ ]

Z

B Z

E Xe
H X Z

E e
,  

where 
1

( ) ( )
n

j
j

Z X  is the aggregate risk and  satisfies   

1

1 1n

j j

. 

Proof:   

The price of any risk X  is   

   ( , ) :BH X Z  Price [ ]X  

           ( ) ( ) ( )X   dP  

  
( ( ))

( ) ( )
[ ] 

Z

Z

e
X   dP

E e
 

  ( ( ))1
( ) ( )

[ ]

Z

Z
X  e  dP

E e
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 ( , )BH X Z ( )1

[ ]

Z

Z
E Xe

E e
.  

We conclude that  

[ ]
( , )

[ ]

Z

B Z

E Xe
H X Z

E e
.  

 

2.8   Wang Transform  

Definition 2.18. Let  denote the standard normal cumulative distribution function, 

i.e., 
21

21
( )  

2

x
s

x e ds , and let  be a real valued parameter. By definition, the  

Wang transform transforms a CDF ( )F x to a function *( )F x :  

     * 1( ) [ ( ( )) ]F x F x ,                   (2.9) 

  It is obvious that *( )F x  is also a CDF.                  

 The key parameter  in the Wang transform of Eq. 2.9 has a positive sign as 

the random variable X  is kept in asset. On the other hand, in the insurance business,  

a liability of loss variable X  is viewed as a negative asset. Thus, the Wang transform 

of our study has a negative sign in front of . That is    

                     * 1( ) [ ( ( )) ]F x F x ,                  (2.10)                           

where  is a positive constant that is relevant to the market price of risk.   

  For a liability with loss variable X , the Wang transform in Eq. 2.9 has an 

equivalent representation. 

                 1( ) [ ( ( )) ]*S x S x ,                      (2.11) 
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where ( ) 1 ( )S x F x . 

Lemma 2.7. For any , * *( ) 1 ( )S x F x . That is, transform  Eq. 2.10 and Eq. 2.11 

are equivalent.  

Proof:  

As  ( ) 1 ( )S x F x  and  1( ) ( ( ))*S x S x .   

That is,          

1( ) ( ( ))*S x S x  

                1(1 ( ))F x  

                1[ ( ( )) )]F x  

                1[ ( ( ( )) )]F x  

                11 [( ( ( )) )]F x  

                *1 ( )F x . 

Thus, the lemma has been proved.  

  Note that above we have used:  

 (1)   1 ( ) ( )x x  

 (2)   1 1(1 ) ( )u u  

Lemma 2.8. Let F  be the Lognormal cumulative distribution function of a loss X  

with  and , i.e., ( , )X LN . Then the Wang transform *F  is a Lognormal 

CDF with  and  corresponding to some loss X  i.e., ( , )X LN . 
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Proof:  

As ( , )X LN  then 
ln

(0,1)
X

N .  

By the Wang transform, for any constant  , one has:   

* 1( ) ( ( ))F x F x  

             1 lnx
  

             
lnx

 

                                            
lnx

 

             
ln ( )x

. 

The proof is completed, one obtains that 

ln ( , )X N ,  

that is 

( , )X LN . 

 

 

 

 

 

 

 

 



30 

 

 

CHAPTER III 

CLAIM MODELING  

 

 In this chapter, the finite mixture of Lognormal distributions is presented for 

the modeling of insurance claims. The EM algorithm is used to perform a parametric 

fit of given data to a mixture of Lognormal distributions. We have performed 

numerical experiments to fit data simulated by mixtures of various loss distributions 

to finite mixture Lognormal distributions, and also mathed an actual set of insurance 

claim data to a finite mixture of Lognormal distributioins.  

We consider individual claim policies, and the claim amount iX  is paid for 

the thi  policy. Some assumptions and restrictions are specified as below.  

Assumption 1: (Policy independence): Consider n  different policies. Let iX  

denote the response for policy i . Then 1,..., nX X  are independent.   

Assumption 2: Severity losses are non-catastrophic losses.  

Assumption 3: There are no deductibles and no reinsurance agreement.   

  Assumption 4: A recorded claim is equal to an actual claim (observation). 

Assumption 5: The loss distributions are skewed to the right.   

 The right skewness of loss distributions are considered for this study. We 

assume that the portfolio claim amount is arising from different loss distributions, 

e.g., the empirical data are generated by mixing of Lognormal, Gamma, Pareto and 

Weibull distributions. We have performed numerical experiments by simulation, see  
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section A. 3 of Appendix A for details. The probability density function (PDF) and 

cumulative distribution function (CDF) of loss distributions are specified in Appendix A.  

 

3.1 Single Parametric Distribution 

 On the basis of the analyst’s knowledge, experience and statistical tests, the 

Lognormal distribution is our selection for modeling and fitting to the data set. The 

maximum likelihood estimate (MLE) is used for parameter estimation, as explained 

below.   

 

3.1.1 The Model  

  Assume that ~X Lognormal( , ) , abbreviated ~X ( , )LN , with density 

            
2

2

1 (ln )
( ) exp

22
X

x
f x

x
  ;    ,   0R ,   0x .          (3.1)  

 

3.1.2 Estimation for the Model  

 Let a vector 1( ,...,  )nx xx  be an independent observation. Consider the 

amount ix  paid for the thi contract. We fit the Lognormal distribution in Eq. 3.1 to the 

data set by MLE. The likelihood function is  
1

( )
n

X i
i

L f x  ;  1,2,...,i n . 

Then  
1

ln ln ( )
n

X i
i

L f x  

                  
i 1

ln ( ) 
n

X if x          
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2

2
i 1

(ln )1
ln ln exp  

22

n
i

i

x
L

x
 

      2

2
i 1

1 1
(ln ln ) ln2 (ln )  

2 2

n

i ix x . 

We estimate ˆ  and ˆ  for  and  respectively  by ln 0L  and ln 0L .  

We obtain maximum likelihood estimates for the parameter  and the parameter  

as follows:    

                 1

ln

ˆ

n

i
i

x

n
  and   

2

1

ˆ(ln )

ˆ

n

i
i

x

n
, respectively.                     (3.2) 

 

3.2    Finite Mixture Models   

 Next, second-order and higher-order finite mixture models are considered. In 

this section, we aim to find the mixing weights according to the number of Lognormal 

distributions and estimated parameters by the MLE via EM algorithm.   

 

3.2.1  The Model  

 The PDF of finite mixture Lognormal distributions is   

1 1( ) ( ) ( )k kf x f x f x  

        

2 2
1

1 2 2
1 1

(ln ) (ln )1 1 1
exp exp

2 22

k
k

k k

x x
 

x
,     (3.3)   

,  0j j ,  0x , where 0 1j  for 1,  ...,  j k  and 1 1k .  

The likelihood function can be written as follows: 
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2 2
1

1 2 2
1 1 1

(ln ) (ln )1 1 1
exp exp

2 22

n
i i k

k
i k ki

x x
L  

x
 

and the log-likelihood function is in the form  

2

2
1 1

(ln )1
ln ln exp

22

n k
i j

j
i j ji j

x
L

x
. 

 

3.2.2 Estimation for the Model  

 Here, we construct the complete data set which is composed of observed data 

(incomplete data) and unobservable (latent) data. The EM algorithm is a powerful 

algorithm for parameter estimation of data arising from mixtures. The details of MLE 

via EM algorithm are as follows.  

 Let a sample 1 2( , ,  ...,  )nx x xx  be observed data to be matched to the 

mixture of Eq. 3.3 and having a postulated PDF as   

( , )f x , 

where  is a vector of unknown parameters; ( , ) , 1 1( ,...,  )k  and   

= 1 1( ,...,  ,  ,...,  )k k .  

Let z  be the unobservable data matrix; denoted by 

 ( ,  1,..., ;  1,..., )ijz i n j kz  

 The values ijz  are indicators defined as   

observation comes from the distribution

elsewhere

 1 ,     

 0 ,  

i j

ij

x f

z                     

The unobservable matrix z  tell us, where the 
thi  observation ix  comes from.  
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Let Z  be a random matrix whose realization is the unobservable matrix z .  

Let ( , )k z | x  denote the conditional PDF of the unobserved data and define 

the PDF as  

( , )k z | x ijt ,  

where  

1

( | , )
= 

( | , )

j j i j j
ij k

j j i j j
j

f x
t

f x

 
( | , )

 
( )

j j i j j

i

f x

f x
. 

Note that ijt  is the probability of the 
thi  observation coming from the thj component. 

We obtain that  

( | ) ( 1 | )ij ij ijE Z P Z tx x . 

 Assume that  X  and Z  are independent. Then the complete likelihood takes 

form;    

( )cL x,z  = 

2

2
1 1

(ln )1
exp

22

ijz
n k

i j
j

i j ji j

x

x
. 

 The complete log-likelihood function is  

ln ( )cL x,z
2

2
1 1

(ln )1
ln exp

22

ijz
n k

i j
j

i j ji j

x

x
 

          

2

2
1 1

(ln )1
ln exp

22

ijz
n k

i j
j

i j ji j

x

x
 

         

2

2
1 1

(ln )1
ln exp

22

n k
i j

ij j
i j ji j

x
z

x
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We obtain that   

ln ( )cL x,z 2

2
1 1

1 1
ln ln ln ln(2 ) (ln )

2 2

n k

ij j i j i j
i j j

z x x .   (3.4)  

Note that: ( , ) , 1 1( ,...,  )k  and = 1 1( ,...,  ,  ,...,  )k k .  

For each k  components, there are 3 1k  unknown parameters that will be 

estimated by the EM algorithm. We use a computer for the calculation of the 

parameters and visualization as a way to see its modeling. The proper number of 

components to be included in the mixture model will be considered.  

Expectation Step (E-step):  

 Replacing ijz  in Eq. 3.4 by its expected value, ˆijt , yields the expected 

complete log-likelihood,  

[ ln ( )]cE L x,z 2

2
1 1

1 1ˆ ln ln ln ln(2 ) (ln )
2 2

n k

ij j i j i j
i j j

t x x ,         (3.5)       

where ˆijt  is the estimated value of ijt .  

Note that: ijt  is given by   

1

( | , )
( 1 , ) = 

( | , )

j j i j j
ij ij i i k

j j i j j
j

f x
t P Z X x

f x

 
( | , )

( )
j j i j j

i

f x

f x
. 

Maximization Step (M-step):  

            We maximize Eq. 3.5 to estimate . Firstly, we solve the first order 

condition:   

[ln ( )] = 0c
j

E L x,z , 
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with constraint  

1 1k . 

2

2
1 1

1 1ˆ ln ln ln ln(2 ) (ln )   0
2 2

n k

ij j i j i j
i jj j

t x x . 

Without loss of generality (w.l.g.), we consider  

1 1

ˆ [ ln ]   0
n k

ij j
i jj

t  

1 1

ˆ ln  = 0 
k n

ij j
j ij

t . 

This has the same form as the MLE for the multinomial distribution, for details see 

multinomial distribution and MLE in Appendix B. We get that      

 1

1 1

ˆ

ˆ

ˆ

n

ij
i

j k n

ij
j i

t

t

1

1 1

ˆ

ˆ

n

ij
i

n k

ij
i j

t

t 1

1 ˆ  
n

ij
i

 t  
n

.                    (3.6) 

Secondly, we solve the equation [ln ( )] 0c
j

E L x,z  for estimated parameters 

of j ( , )j j , 1,  2,...,  j k . 

Consider   1 1 1( , ) .  

We will estimate 1  by solving;   

1

[ln ( )] 0cE L x,z  and  
1

[ln ( )] = 0cE L x,z . 

Note that the relation 
1

[ln ( )] 0cE L x,z   and equation (3.6) imply 
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2

2
1 1 1

1 1ˆ ln ln ln ln(2 ) (ln )   0
2 2

n k

ij j i j i j
i j j

t x x  

2
1 1 1 12

1 1 1

1 1ˆ ln ln ln ln(2 ) (ln )   0
2 2

n

i i i
i

t x x  

1 1
1

ˆ (ln )  0
n

i i
i

t x  

1 1 1
1 1

ˆ ˆln   0
n n

i i i
i i

t x t  

1
1

1

1
1

ˆ ln

ˆ   
ˆ

n

i i
i

n

i
i

t x

t

. 

1

[ln ( )] 0cE L x,z  

2
2

1 1 1

1 1ˆ ˆln ln ln ln(2 ) (ln )   0
2 2

n k

ij j i j i j
i j j

t x x  

2
1 1 1 12

1 1 1

1 1ˆ ˆln ln ln ln(2 ) (ln )   0
2 2

n

i i i
i

t x x  

2
1 13

1 1 1

1 1ˆ ˆ(ln )   0
n

i i
i

t x  

2
1 12

1 1

1ˆ ˆ1 (ln )   0
n

i i
i

t x  

2
1 1 12

1 11

1 ˆ ˆˆ(ln )    
n n

i i i
i i

t x t  
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2
1 11

1

11

ˆ ˆ(ln )
ˆ   

ˆ

n

i ii
n

ii

t x

t
. 

 Similarly, one can show that   

1
j

1

ˆ ln

ˆ

ˆ

n

ij i
i

n

ij
i

t x

t

  and   

2
1

1

ˆ ˆ(ln )
ˆ   

ˆ

n

ij i ji
j n

iji

t x

t
, 1,  2,...,  j k . 

In summary, we obtain that   

ˆj
1

1 ˆ
n

ij
i

  t
n

,  1
j

1

ˆ ln

ˆ  = 
ˆ

n

ij i
i

n

ij
i

t x

t

  and  

2

1

1

ˆ ˆ(ln )

ˆ  =   
ˆ

n

ij i j
i

j n

ij
i

t x

t

 ; 

1,  2,...,  j k . 

Note that the expected complete log-likelihood function is given by  

[ln ( )] cE L x,z 2

2
1 1

1 1ˆ ln ln ln ln(2 ) (ln )
2 2

n k

ij j i j i j
i j j

t x x . 

 For a given set of parameters , i.e. ˆj ˆ ˆ( ,  )j j , 1,  2,...,  j k  and 

1 1ˆ ˆ ˆ( ,...,  )k , the E-step consists of calculating ˆijt  and ˆj  for M-step. Given 

ˆj , the M-step consists of maximizing the expected complete log-likelihood function. 

The E-step and M-step are repeated in an alternating fashion until the expected 

complete log-likelihood fails to increase. At this point, we conduct a final M-step in 

which the set of parameters  is estimated. Otherwise, we return to the E-step for the 

next iteration.  In the final step after the thm iteration, the EM algorithm is produced 

as below:  
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 E-step: Given our current estimation of the parameters ( )m after the thm  

iteration. Thus the E-step results in the function:  

( )( | )mQ
2

( ) ( ) ( ) ( ) 2

( )1 1

1 1ˆ ˆˆ ˆln ln ln ln(2 ) (ln )
2 ˆ2

n k
m m m m

ij j i j i j
mi j
j

t  x x . (3.7) 

 M-step: Maximizing . That is 

( 1)ˆ m = ( )argmax ( | )mQ  and ( 1)ˆm = ( )argmax ( | )mQ . 

 By taking partial derivative Eq. 3.7 with respect to  and by equating to zero, one 

gets 

( 1)ˆ m
j

( )

1

1 ˆ
n

m
ij

i

t
n

,  

( )

( 1) 1

( )

1

ˆ ln

ˆ

ˆ

n
m

ij i
m i
j n

m
ij

i

t x

t

 

 and        

( ) ( ) 2
1 1

( )
1

ˆ ˆ(ln )
ˆ  

ˆ

n m m
m ij i ji
j n m

iji

t x

t
. 

 Note that 

( 1) ( )
3

( )

( | ) ( | )
10

( | )

m m

m

Q Q

Q
 is applied for our programming.  

 

3.3  Bootstrap Technique 

 We are interested in the bootstrap sample for observation and residual. We 

shall recalculate the estimated parameters of the Lognormal distribution by using the 

bootstrap technique and MLE. One advantage of the bootstrap technique is that we 

can calculate as many replications of the sample as we want. 
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3.3.1 Observation Bootstrap  

  Define       

                    * * * *
1 2( ,  ,...,  )nx x xx .             (3.8) 

  The bootstrap data points * * *
1 2,  ,...,  nx x x  are a random sample of size n  with  

replacement from the observation of n  objects 1 2( ,  ,...,  )nx x x . Then we recalculate  

the estimated parameters, *ˆ  and *ˆ , by MLE  based on *x .  

 

3.3.2 Residual Bootstrap 

 There are many forms of the residual definition and it is important to use an 

appropriate residual definition for the determination of each problem. We have 

already run trials with some forms of residual definitions, such as the unscaled 

Pearson residual and the unscaled Anscombe residual, but these forms of residual 

proned not suitable for our data. Instead, we consider the residual form ˆ , that is, we 

define the form of the residual as follows. 

ˆlni ix , 

where  i  is the residual ( 1,2,...,i n ) and ˆ  comes from Eq. 3.2. 

  Let 1 2( ,  ,...,  )n  and 
* * *
1 2( ,  ,...,  )n

*
 be the resample residual.  

By using the bootstrap technique, we obtain a resample *  and the bootstrap data 

samples 

     * * ˆln i ix   ; 1,2,..., .i n                                  (3.9)          
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  We recalculate the estimated parameters, *ˆ  and *ˆ  by MLE based on *ln ix , 

1,  2,...,  i n .  

 

3.4 Goodness of Fit Test  

 The goodness of fit (GOF) test measures the compatibility of a random sample 

with a theoretical probability distribution function. We use the Kolmogorov-Smirnov 

test (K-S test) and the Anderson-Darling test (A-D test) for showing how well the 

distribution fits our data set.     

  The K-S test is used to decide if a sample comes from a hypothesized 

continuous distribution. It is based on the empirical cumulative distribution function 

(ECDF) and denoted by  

Number of observations
1

( )nF x x
n

. 

  The K-S  test  statistic is defined by 

*sup   ( ) ( ) n X
x

D F x F x . 

 The A-D test is a general test to compare the fit of an observed cumulative 

distribution function to an expected cumulative distribution function. This test gives 

more weight to the tails than the K-S test. 

 The A-D test statistic is defined as 

2 * *
1

1

1
(2 1) ln ( ) ln 1 ( )

n

X i X n i
i

A n i F x F x
n

, 

where 
*
XF  is the theoretical cumulative distribution of the distribution being tested. 

 The test, for both K-S  and A-D , is defined by:  
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0H :  The data follow the specified distribution. 

1H :  The data do not follow the specified distribution. 

Level critical values: The hypothesis regarding the distributional form is 

rejected at the chosen significance level (alpha, ) if the test statistic,  D and 2A , is 

greater than the critical value obtained from Appendix A, Table A.4 and Table A.5 for 

D and 2A , respectively. On the other hand, we can calculate the P-value and interpret 

the result of hypothesis test. The interpretation of the P-value is given in Table A.6 of 

Appendix A.  

 

3.5  The Simulation  

We assume that the insurance portfolio is heterogeneous, due to variability in 

the parameters and distributions, and thus cannot be fitted to any single parametric 

distribution. For this reason, we have performed numerical experiments matching 

simulated data to finite mixtures of Lognormal distribution. The simulated 

heterogeneous data was generated by applying various combinations of loss 

distributions. The programming for this study is in MATLAB.  

  The data is generated by simulations that are under the following assumptions.   

1)  Sample size   

     n : 100, 300, 500, 800 and 1,000 for 2 and 4 mixed components.  

     n : 150, 300, 600, 900 and 1,200 for 3 mixed components.  

2)  The empirical data  

   2.1)  The loss distributions: Lognormal, Gamma, Pareto and Weibull.  
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  2.2)  The empirical data: The ix  is simulated by loss distributions, due to 

variability in the parameters and distributions as detailed in Table 3.1.   

Table 3.1 The variability of mixed components.  

Parameters Distributions

2  Lognormal   Lognormal/Gamma

 Gamma  Lognormal/Pareto

 Pareto  Lognormal/Weibull

 Weibull  Gamma/Pareto 

 Gamma/Weibull

 Pareto /Weibull

3  Lognormal   Lognormal/Gamma/Weibull

 Gamma  Gamma/Weibull/Pareto

 Pareto  Weibull/Pareto/Lognormal

 Weibull  

4 -  Lognormal/Gamma/Weibull/Pareto 

Components 
Variability 

 

   

  The proportion of mixing is the same for each component mixed. The 

empirical data are simulated according to assumed parameters for each component 

mixed, see the imposed parameters for details in Table A.1, Table A.2 and Table A.3 

of appendix A. The simulations span 90 cases.  

2.3) The compound Poisson-mixed loss distributions: the frequency 

distribution is Poisson and the severity distributions are loss distributions. For 

1,  2,...,   i n , the claim iX  occurs at time it  and is to be discounted at time zero 

with the risk free of interest rate j  per annum. The claim amount at time zero is 

defined by  

*  (1 ) it
i iX X j . 

   The j  are assumed as 0.5%, 1% , 2%, 3%, 4% and 5%  per annum.  
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  3)   The model of finite mixture distributions 

        The models for fitting to the empirical data is the finite mixture of 

Lognormal distributions. The k  components depend on the sample size n .  The total 

number of calculated components is 752 for 2, 3 and 4 components are 410, 301 and 

41 cases, respectively. The single parametric distribution of Lognormal is used as a 

control to compare how well the finite mixture Lognormal distributions perform. 

4) The bootstrap  

     The bootstrap process is a tool for fitting and it is not complicated to 

implement. We apply the bootstrap technique to reproduce pseudo data; reproduce 

from empirical data, then recalculate the estimated parameters by MLE and compare 

to the finite mixture Lognormal distributions.  

  The simulations run 200 iterations for the best solution that provide the 

estimated parameters for model fitting. That is, the average of estimated parameters 

are rather stable as the number of iterations is 200 times.  
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Figure 3.1  Flowchart of the claim modeling process. 
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Figure 3.1  Flowchart of the claim modeling process (Continued). 
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3.6  Simulation Results  

 The purpose of claim modeling is to investigate the k components and 

summarize what kind of mixed loss data can be fitted by the finite mixture of 

Lognormal distributions. The empirical data is simulated by mixed components of 

loss distributions; Lognormal, Gamma, Pareto and Weibull distributions. The 

methodologies for parameter estimation are the MLE for single parametric Lognormal 

distribution and the EM for finite mixture Lognormal distributions. The statistical test 

for model fitting are K-S and A-D test. Some symbols are defined for easier 

explanation.  

            EMD   means the empirical data which are simulated by mixed components of 

loss distributions.  

 EDP means the empirical data of discounted compound Poisson-mixed loss 

distributions with interest rate j per annum.  

 SPLD  means  the fitting of single parametric Lognormal distribution to EMD.  

SPLD with Boot means the fitting of single parametric Lognormal distribution 

to the EMD with the bootstrap technique.  

DCP   means the fitting of single parametric Lognormal distribution to the 

EDP.  

P-AS means P-value based on A-D test 

P-KS   means P-value based on K-S test  

 We analyze and present the value of 2A , D , P-AS, P-KS, ˆ  and ˆ  on tables. 

The results are shown as the following tables.  
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 Tables 3.2 - 3.20 show the values of 2A , D , P-AS, P-KS, ˆ  and ˆ  of SPLD, 

SPLD with Boot and DCP for each sample size.  

  The results: For SPLD, the single parametric Lognormal distribution cannot be 

fitted to any EMD by A-D and K-S test. The SPLD with Boot, the single parametric 

Lognormal distribution is fitted to some sample sizes of EMD respective to K-S test 

only. The DCP, the single parametric Lognormal distribution cannot be fitted to any 

EDP by A-D and K-S test. For each sample size, the value of 2A  and D  are mostly 

reduced when interest rate j  increases.  

 Tables 3.21 - 3.39 show the values of 2A , D , P-AS and P-KS of finite mixture 

Lognormal distributions for fitting in each sample size. The results show that the finite 

mixture Lognormal distributions can be fitted to EMD at a significant level of 

0.10 , for both K-S and A-D test. The mixture Lognormal distributions are a better 

fit to the EMD while k  is increased.    
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Table 3.2 Lognormal distribution fitting to 2 mixed components of Lognormal  

distributed samples.  

3.17131 3.79915 3.17121 3.17111 3.17087 3.17059 3.17028 3.16995

0.15850 0.11702 0.15851 0.15852 0.15854 0.15857 0.15857 0.15856

P-AS 0.03009 0.01170 0.03010 0.03010 0.03011 0.03011 0.03011 0.03011

P-KS 0.01667 0.13110 0.01665 0.01664 0.01660 0.01656 0.01656 0.01658

8.73616 12.25058 8.73610 8.73601 8.73578 8.73548 8.73511 8.73469

0.14730 0.11401 0.14730 0.14730 0.14730 0.14728 0.14727 0.14724

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

14.57275 12.89082 14.57307 14.57336 14.57385 14.57422 14.57446 14.57459

0.14465 0.11374 0.14465 0.14465 0.14465 0.14470 0.14472 0.14474

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

22.90827 20.24887 22.90826 22.90819 22.90788 22.90733 22.90656 22.90557

0.14177 0.11357 0.14177 0.14176 0.14173 0.14175 0.14174 0.14173

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

28.55152 28.11877 28.55142 28.55125 28.55071 28.54990 28.54882 28.54747

0.14111 0.13422 0.14109 0.14108 0.14109 0.14108 0.14110 0.14110

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

800

1,000

100

500

300

0.50% 1% 2% 3% 4% 5%
n Item SPLD

 SPLD with 

Boot  

DCP 

2A

2A
D

D

2A
D

2A
D

2A
D

 
  

Table 3.3 Lognormal distribution fitting to 2 mixed components of Gamma 

distributed samples. 

17.65236 17.70023 17.64868 17.63912 17.60802 17.56771 17.52201 17.47268

0.33564 0.33482 0.33561 0.33556 0.33539 0.33516 0.33488 0.33458

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

52.94636 52.91433 52.93683 52.90952 52.81970 52.70469 52.57605 52.43828

0.33670 0.33644 0.33664 0.33647 0.33606 0.33561 0.33515 0.33470

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

88.25355 88.24749 88.23911 88.19881 88.06382 87.88685 87.68613 87.46952

0.33791 0.33643 0.33786 0.33772 0.33731 0.33685 0.33637 0.33588

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

141.18684 141.11608 141.16129 141.08858 140.84636 140.53080 140.17342 139.78778

0.33860 0.33755 0.33853 0.33835 0.33790 0.33742 0.33692 0.33641

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

176.49137 176.40968 176.45893 176.36581 176.05765 175.65994 175.21189 174.72965

0.33881 0.33705 0.33872 0.33855 0.33810 0.33762 0.33713 0.33662

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

1,000

300

500

800

100

3% 4% 5%
SPLD

 SPLD with 

Boot  

DCP 
n

0.50% 1% 2%
Item 

2A
D

2A
D

2A
D

2A
D

2A
D

2A
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Table 3.4  Lognormal distribution fitting to 2 mixed components of Pareto distributed   

samples.  

1.35102 0.93414 1.35050 1.34998 1.34893 1.34787 1.34677 1.34567

0.09820 0.08134 0.09817 0.09815 0.09807 0.09798 0.09788 0.09778

P-AS > 0.10 > 0.10 > 0.10 > 0.10 > 0.10 > 0.10 > 0.10 > 0.10

P-KS > 0.10 > 0.10 > 0.10 > 0.10 > 0.10 > 0.10 > 0.10 > 0.10

3.25056 2.00082 3.25008 3.24957 3.24847 3.24728 3.24599 3.24461

0.08667 0.06509 0.08665 0.08663 0.08661 0.08660 0.08660 0.08658

P-AS 0.02777 0.09393 0.02779 0.02780 0.02783 0.02787 0.02790 0.02795

P-KS 0.02909 > 0.10 0.02914 0.02920 0.02923 0.02928 0.02927 0.02932

5.18852 6.42725 5.18898 5.18940 5.19011 5.19065 5.19105 5.19130

0.08365 0.08358 0.08364 0.08363 0.08365 0.08365 0.08366 0.08367

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

8.05050 10.06196 8.05056 8.05055 8.05030 8.04977 8.04896 8.04787

0.08192 0.08086 0.08193 0.08195 0.08198 0.08201 0.08201 0.08197

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

10.21911 9.80539 10.21938 10.21954 10.21959 10.21927 10.21858 10.21753

0.08271 0.07815 0.08274 0.08277 0.08280 0.08281 0.08283 0.08282

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

800

1,000

100

300

500

0.50% 1% 2% 3% 4% 5%
n Item SPLD

 SPLD with 

Boot  

DCP 

2A
D

2A
D

2A
D

2A
D

2A
D

2A2A
D

2A
D

2A
D

2A
D

2A
D

2A

 
  

Table 3.5 Lognormal distribution fitting to 2 mixed components of Weibull    

distributed samples. 

4.13089 5.22480 4.13035 4.12976 4.12846 4.12699 4.12534 4.12352

0.18545 0.13401 0.18545 0.18545 0.18545 0.18542 0.18537 0.18530

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 0.05710 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

11.62556 10.71413 11.62469 11.62368 11.62122 11.61824 11.61473 11.61072

0.18407 0.16742 0.18405 0.18406 0.18406 0.18404 0.18402 0.18402

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

19.13908 18.09580 19.13954 19.13978 19.13966 19.13873 19.13700 19.13450

0.18334 0.16448 0.18334 0.18331 0.18328 0.18327 0.18326 0.18327

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

30.58181 29.84309 30.58216 30.58212 30.58091 30.57822 30.57410 30.56858

0.18246 0.17097 0.18246 0.18246 0.18244 0.18241 0.18236 0.18230

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

37.94584 36.09822 37.94626 37.94618 37.94457 37.94107 37.93574 37.92861

0.18131 0.16808 0.18134 0.18136 0.18141 0.18144 0.18141 0.18137

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

800

1,000

100

300

500

0.50% 1% 2% 3% 4% 5%
n Item SPLD

 SPLD with 

Boot  

DCP 

2A
D

2A
D

2A
D

2A
D

2A
D

2A
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Table 3.6 Lognormal distribution fitting to mixed components of Lognormal and 

Gamma distributed samples. 

8.36264 10.82667 8.35954 8.35222 8.33006 8.30356 8.27557 8.24709

0.28165 0.26531 0.28157 0.28141 0.28101 0.28055 0.28009 0.27964

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

25.19776 26.46229 25.19049 25.17055 25.10745 25.03090 24.94982 24.86721

0.28719 0.26883 0.28712 0.28698 0.28659 0.28617 0.28571 0.28525

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

41.39709 40.20186 41.38693 41.35875 41.26759 41.15474 41.03406 40.91052

0.28791 0.26741 0.28785 0.28772 0.28733 0.28689 0.28642 0.28593

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

66.47282 64.77281 66.45435 66.40370 66.24287 66.04712 65.83950 65.62779

0.28867 0.27133 0.28858 0.28840 0.28800 0.28758 0.28713 0.28670

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

82.91493 83.82496 82.89098 82.82538 82.61786 82.36636 82.10019 81.82904

0.28849 0.27916 0.28842 0.28826 0.28784 0.28739 0.28691 0.28644

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

800

1,000

100

300

500

0.50% 1% 2% 3% 4% 5%
n Item SPLD

 SPLD with 

Boot  

DCP 

2A
D

2A
D

2A
D

2A
D

2A
D

2A

 
 

 

Table 3.7 Lognormal distribution fitting to mixed components of Lognormal and 

Pareto distributed samples.  

3.08540 3.39554 3.08529 3.08517 3.08491 3.08463 3.08431 3.08396

0.17810 0.11972 0.17812 0.17814 0.17818 0.17823 0.17827 0.17830

P-AS 0.03261 0.02352 0.03261 0.03262 0.03263 0.03263 0.03264 0.03265

P-KS < 0.01 > 0.10 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

8.34191 7.64943 8.34183 8.34175 8.34153 8.34125 8.34092 8.34053

0.16780 0.14207 0.16779 0.16778 0.16776 0.16776 0.16776 0.16778

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

13.65111 10.17753 13.65103 13.65092 13.65063 13.65023 13.64973 13.64914

0.16685 0.13066 0.16683 0.16682 0.16680 0.16680 0.16680 0.16678

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

21.85418 23.69013 21.85442 21.85460 21.85479 21.85478 21.85455 21.85413

0.16603 0.15096 0.16603 0.16603 0.16603 0.16604 0.16605 0.16601

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

27.27300 27.77180 27.27287 27.27268 27.27212 27.27131 27.27026 27.26899

0.16545 0.14315 0.16546 0.16546 0.16546 0.16549 0.16549 0.16551

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

800

1,000

100

300

500

0.50% 1% 2% 3% 4% 5%
n Item SPLD

 SPLD with 

Boot  

DCP 

2A
D

2A
D

2A
D

2A
D

2A
D

2A
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Table 3.8 Lognormal distribution fitting to mixed components of Lognormal and 

Weibull distributed samples. 

4.26848 4.26702 4.26814 4.26777 4.26692 4.26591 4.26475 4.26347

0.17643 0.15871 0.17643 0.17644 0.17645 0.17642 0.17637 0.17635

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 0.01636 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

12.20158 11.97442 12.20095 12.20020 12.19834 12.19601 12.19324 12.19004

0.16639 0.15430 0.16638 0.16637 0.16637 0.16635 0.16634 0.16630

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

20.05170 16.98177 20.05237 20.05286 20.05332 20.05310 20.05223 20.05075

0.16271 0.15071 0.16271 0.16269 0.16264 0.16263 0.16263 0.16264

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

31.68224 0.00000 31.68178 31.68101 31.67853 31.67486 31.67003 31.66407

0.16061 0.00000 0.16061 0.16063 0.16059 0.16058 0.16060 0.16059

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

39.41399 39.61496 39.41407 39.41374 39.41187 39.40843 39.40347 39.39704

0.15915 0.15700 0.15916 0.15917 0.15916 0.15915 0.15909 0.15906

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

800

1,000

100

300

500

0.50% 1% 2% 3% 4% 5%
n Item SPLD

 SPLD with 

Boot  

DCP 

2A
D

2A
D

2A
D

2A
D

2A
D

2A

 
 

 

Table 3.9   Lognormal distribution fitting to mixed components of Gamma and Pareto 

distributed samples.   

2.04088 2.38613 2.04071 2.04052 2.04008 2.03956 2.03894 2.03825

0.10608 0.09329 0.10605 0.10604 0.10609 0.10615 0.10615 0.10612

P-AS 0.09035 0.05947 0.09037 0.09038 0.09042 0.09047 0.09052 0.09059

P-KS > 0.10 > 0.10 > 0.10 > 0.10 > 0.10 > 0.10 > 0.10 > 0.10

30.97450 30.52701 30.96801 30.95086 30.89688 30.83150 30.76228 30.69168

0.32702 0.31086 0.32696 0.32684 0.32652 0.32618 0.32583 0.32546

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

51.57491 52.20833 51.56640 51.54279 51.46606 51.37082 51.26872 51.16397

0.32832 0.31407 0.32827 0.32816 0.32786 0.32752 0.32717 0.32681

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

82.23466 79.78941 82.21950 82.17711 82.04146 81.87565 81.69931 81.51910

0.32892 0.31571 0.32886 0.32873 0.32840 0.32805 0.32769 0.32732

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

102.82321 103.40175 102.80369 102.74892 102.57454 102.36248 102.13754 101.90794

0.32919 0.31637 0.32913 0.32900 0.32868 0.32832 0.32795 0.32758

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

800

1,000

100

300

500

0.50% 1% 2% 3% 4% 5%
n Item SPLD

 SPLD with 

Boot  

DCP 

2A
D

2A
D

2A
D

2A
D

2A
D

2A
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Table 3.10 Lognormal distribution fitting to mixed components of Gamma and 

Weibull distributed samples.  

9.91611 8.83166 9.90379 9.86071 9.72101 9.55326 9.37798 9.20191

0.29076 0.26196 0.29037 0.28926 0.28641 0.28312 0.27997 0.27672

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

29.11845 30.72714 29.08552 28.98218 28.63543 28.19967 27.73287 27.25684

0.29388 0.29173 0.29363 0.29299 0.29100 0.28856 0.28606 0.28337

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

48.49356 51.95749 48.42520 48.23654 47.61966 46.85123 46.03050 45.19494

0.29456 0.29122 0.29424 0.29340 0.29125 0.28864 0.28589 0.28323

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

77.32569 72.98106 77.19756 76.83886 75.69606 74.31018 72.85114 71.37711

0.29456 0.29227 0.29419 0.29316 0.29032 0.28728 0.28405 0.28074

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

96.61183 93.90908 96.44155 95.99545 94.58801 92.87947 91.07743 89.25504

0.29472 0.28922 0.29444 0.29360 0.29093 0.28801 0.28486 0.28206

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

300

500

800

1,000

1% 2% 3% 4% 5%

100

n Item SPLD
 SPLD with 
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DCP 

0.50%
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D
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2A
D
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D

2A

 
 

 

Table 3.11 Lognormal distribution fitting to mixed components of Pareto and Weibull 

distributed samples.  

5.75862 5.55956 5.75743 5.75620 5.75361 5.75083 5.74787 5.74475

0.21185 0.16336 0.21182 0.21179 0.21174 0.21170 0.21167 0.21163

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

16.61916 16.88498 16.61876 16.61821 16.61665 16.61448 16.61177 16.60849

0.21225 0.18487 0.21224 0.21224 0.21222 0.21219 0.21216 0.21214

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

27.61244 28.88741 27.61359 27.61451 27.61570 27.61604 27.61556 27.61428

0.21162 0.19110 0.21162 0.21162 0.21159 0.21158 0.21159 0.21160

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

44.08424 45.74890 44.08392 44.08320 44.08056 44.07639 44.07071 44.06359

0.21117 0.19289 0.21116 0.21114 0.21113 0.21112 0.21109 0.21107

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

54.94829 51.99963 54.94883 54.94885 54.94733 54.94379 54.93831 54.93094

0.21034 0.19568 0.21034 0.21033 0.21033 0.21031 0.21029 0.21026

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

100

300

500

800

1,000

SPLD
 SPLD with 

Boot  

DCP 

0.50% 1% 2% 3% 4% 5%
n Item 

2A
D

2A
D
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D
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D
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D
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Table 3.12 Lognormal distribution fitting to 3 mixed components of Lognormal  

distributed samples. 

4.48931 4.32716 4.48752 4.48572 4.48213 4.47854 4.47497 4.47139

0.14444 0.09437 0.14439 0.14433 0.14424 0.14419 0.14415 0.14409

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 > 0.10 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

8.80618 9.00591 8.80635 8.80651 8.80675 8.80693 8.80704 8.80709

0.13817 0.11239 0.13816 0.13815 0.13814 0.13811 0.13808 0.13805

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

17.37574 17.23807 17.37734 17.37890 17.38192 17.38480 17.38755 17.39016

0.13454 0.11093 0.13455 0.13457 0.13465 0.13471 0.13474 0.13475

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

25.46682 26.30497 25.46961 25.47234 25.47764 25.48272 25.48759 25.49226

0.13125 0.11949 0.13127 0.13128 0.13130 0.13133 0.13136 0.13139

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

34.30348 28.44723 34.30430 34.30507 34.30641 34.30750 34.30836 34.30899

0.13092 0.11553 0.13091 0.13093 0.13096 0.13098 0.13097 0.13099

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

900

1,200

150

600

300

0.50%
Item SPLD

 SPLD with 

Boot  

DCP 
n

1% 2% 3% 4% 5%
2A

D
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D
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2A
D

 
 

 

Table 3.13 Lognormal distribution fitting to 3 mixed components of Gamma 

distributed samples. 

20.76018 21.67382 20.76271 20.75568 20.72551 20.68476 20.63839 20.58838

0.34723 0.32125 0.34724 0.34710 0.34664 0.34602 0.34533 0.34461

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

41.51742 42.80644 41.50194 41.46639 41.36120 41.23442 41.09670 40.95219

0.35034 0.32819 0.35023 0.34995 0.34923 0.34845 0.34762 0.34678

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

83.02808 84.60625 82.99630 82.93142 82.74127 82.51110 82.26093 81.99847

0.35176 0.33251 0.35162 0.35135 0.35066 0.34989 0.34910 0.34830

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

124.54406 126.26601 124.49855 124.39603 124.09420 123.73290 123.34305 122.93572

0.35222 0.33586 0.35207 0.35176 0.35096 0.35007 0.34915 0.34820

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

166.04475 168.41179 165.99757 165.87944 165.51675 165.07255 164.58778 164.07784

0.35242 0.33565 0.35227 0.35197 0.35114 0.35023 0.34930 0.34836

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

1,200

300

600

900

150

SPLD
 SPLD with 

Boot  

DCP 
n

4% 5%
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1% 2% 3%0.50%
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D
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Table 3.14 Lognormal distribution fitting to 3 mixed components of Pareto 

distributed samples.  

4.92811 5.00806 4.93000 4.93186 4.93552 4.93908 4.94252 4.94585

0.15115 0.12847 0.15117 0.15120 0.15126 0.15132 0.15137 0.15141

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 0.01838 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

9.47184 9.89068 9.47164 9.47139 9.47078 9.47001 9.46909 9.46802

0.14693 0.13241 0.14693 0.14693 0.14689 0.14687 0.14683 0.14684

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

18.73960 16.96631 18.73810 18.73653 18.73324 18.72974 18.72603 18.72211

0.14474 0.12337 0.14475 0.14475 0.14475 0.14476 0.14476 0.14477

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

28.00193 29.38318 27.99868 27.99533 27.98836 27.98100 27.97329 27.96522

0.14364 0.13599 0.14363 0.14362 0.14358 0.14356 0.14355 0.14356

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

37.15138 37.33256 37.14992 37.14833 37.14476 37.14067 37.13609 37.13103

0.14255 0.13263 0.14256 0.14256 0.14254 0.14253 0.14251 0.14251

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

900

1,200

150

300

600

0.50% 1% 2% 3% 4% 5%
Item SPLD

 SPLD with 

Boot  

DCP 
n
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D
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D

2A
D
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D
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Table 3.15 Lognormal distribution fitting to 3 mixed components of Weibull 

distributed samples.   

10.13939 10.34525 10.14507 10.15062 10.16136 10.17162 10.18141 10.19074

0.22568 0.20598 0.22575 0.22582 0.22597 0.22613 0.22625 0.22633

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

20.23490 18.59456 20.23273 20.23038 20.22514 20.21924 20.21266 20.20543

0.22712 0.20239 0.22714 0.22716 0.22716 0.22711 0.22705 0.22695

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

39.84124 41.27956 39.83297 39.82443 39.80661 39.78779 39.76801 39.74732

0.22408 0.20803 0.22405 0.22401 0.22395 0.22392 0.22388 0.22383

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

59.96905 56.94038 59.95949 59.94944 59.92787 59.90442 59.87913 59.85211

0.22474 0.21355 0.22472 0.22470 0.22470 0.22468 0.22461 0.22456

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

79.73742 77.15067 79.73257 79.72710 79.71432 79.69917 79.68172 79.66202

0.22363 0.20890 0.22361 0.22359 0.22357 0.22353 0.22352 0.22346

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

900

1,200

150

300

600

0.50% 1% 2% 3% 4% 5%
Item SPLD

 SPLD with 

Boot  

DCP 
n

2A
D
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D
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Table 3.16 Lognormal distribution fitting to mixed components of Lognormal, 

Gamma and Weibull distributed samples. 

17.54073 16.98817 17.54576 17.54877 17.55054 17.54924 17.54649 17.54294

0.36507 0.34467 0.36505 0.36499 0.36476 0.36445 0.36410 0.36375

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

34.95202 36.35885 34.94652 34.93584 34.90468 34.86751 34.82806 34.78756

0.36811 0.34885 0.36804 0.36791 0.36756 0.36719 0.36681 0.36644

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

69.83733 69.27511 69.82344 69.80074 69.73789 69.66355 69.58457 69.50348

0.36907 0.35310 0.36901 0.36889 0.36858 0.36823 0.36788 0.36752

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

104.78636 105.27593 104.76816 104.73453 104.63799 104.52344 104.40195 104.27729

0.36930 0.35392 0.36922 0.36908 0.36875 0.36834 0.36790 0.36747

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

139.33974 139.79703 139.32499 139.29080 139.18486 139.05507 138.91578 138.77213

0.36927 0.35557 0.36919 0.36904 0.36869 0.36827 0.36788 0.36748

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

900

1,200

150

300

600

0.50% 1% 2% 3% 4% 5%
Item SPLD

 SPLD with 

Boot  

DCP 
n

2A
D
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D
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Table 3.17 Lognormal distribution fitting to mixed components of Gamma, Weibull 

and Pareto distributed samples.  

11.27102 12.39009 11.26685 11.26067 11.24421 11.22494 11.20458 11.18375

0.22300 0.20798 0.22293 0.22286 0.22274 0.22261 0.22247 0.22234

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

22.36032 22.81061 22.35977 22.35394 22.33244 22.30516 22.27585 22.24573

0.22243 0.20986 0.22245 0.22246 0.22248 0.22250 0.22253 0.22257

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

44.24601 41.25085 44.24877 44.24250 44.21220 44.17042 44.12413 44.07591

0.22127 0.20776 0.22132 0.22134 0.22137 0.22143 0.22143 0.22142

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

66.22609 65.75394 66.22159 66.20160 66.13236 66.04541 65.95203 65.85607

0.22044 0.21492 0.22044 0.22044 0.22046 0.22046 0.22047 0.22050

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

88.41672 89.06076 88.40876 88.38116 88.28839 88.17229 88.04745 87.91913

0.21976 0.21058 0.21978 0.21979 0.21980 0.21977 0.21975 0.21975

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

900

1,200

150

300

600

0.50% 1% 2% 3% 4% 5%
Item SPLD

 SPLD with 

Boot  

DCP 
n

2A
D
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Table 3.18  Lognormal distribution fitting to mixed components of Weibull, Pareto 

and Lognormal distributed samples.   

6.28572 5.70624 6.28668 6.28756 6.28916 6.29050 6.29161 6.29250

0.17972 0.15078 0.17977 0.17980 0.17986 0.17986 0.17986 0.17987

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

11.98518 12.41797 11.98519 11.98510 11.98462 11.98373 11.98244 11.98076

0.17346 0.15978 0.17348 0.17350 0.17351 0.17354 0.17356 0.17360

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

24.56584 20.04620 24.56561 24.56522 24.56397 24.56210 24.55963 24.55658

0.17255 0.15626 0.17255 0.17255 0.17254 0.17251 0.17252 0.17253

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

36.03477 34.90527 36.03336 36.03168 36.02754 36.02236 36.01621 36.00907

0.16922 0.15106 0.16922 0.16921 0.16921 0.16919 0.16922 0.16921

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

48.27341 47.72015 48.27226 48.27079 48.26685 48.26165 48.25522 48.24761

0.17022 0.16139 0.17023 0.17022 0.17022 0.17019 0.17020 0.17017

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

900

1,200

150

300

600

0.50% 1% 2% 3% 4% 5%
Item SPLD

 SPLD with 

Boot  

DCP 
n
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D

2A
D

2A
D

2A
D

2A
D

2A

 
 

 

Table 3.19  Lognormal distribution fitting to mixed components of Pareto, Lognormal 

and Gamma distributed samples. 

6.10410 5.51327 6.10241 6.09708 6.07998 6.05940 6.03776 6.01579

0.21850 0.18465 0.21846 0.21834 0.21800 0.21759 0.21715 0.21666

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

11.67553 11.36463 11.67077 11.65936 11.62441 11.58271 11.53884 11.49427

0.21929 0.20598 0.21924 0.21910 0.21875 0.21838 0.21800 0.21761

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

22.89235 22.31802 22.88289 22.86307 22.80293 22.72968 22.65165 22.57191

0.21523 0.20548 0.21518 0.21504 0.21471 0.21430 0.21382 0.21337

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

34.38764 34.42791 34.37717 34.34828 34.25603 34.14365 34.02461 33.90335

0.21570 0.20334 0.21562 0.21545 0.21509 0.21463 0.21416 0.21370

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

45.77310 45.41784 45.75870 45.72216 45.60621 45.46375 45.31202 45.15707

0.21591 0.20954 0.21581 0.21564 0.21528 0.21483 0.21435 0.21389

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

900

1,200

150

300

600

0.50% 1% 2% 3% 4% 5%
Item SPLD

 SPLD with 

Boot  

DCP 
n

2A
D

2A
D

2A
D

2A
D

2A
D

2A
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Table 3.20 Lognormal distribution fitting to mixed components of Lognormal, 

Gamma, Pareto and Weibull distributed samples. 

3.69190 3.34164 3.68765 3.68255 3.67053 3.65724 3.64346 3.62952

0.21151 0.18386 0.21136 0.21116 0.21066 0.21012 0.20958 0.20906

P-AS 0.01484 0.02510 0.01496 0.01511 0.01546 0.01585 0.01626 0.01667

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

10.07180 8.36302 10.06482 10.05503 10.02959 10.00011 9.96909 9.93749

0.20773 0.17785 0.20763 0.20746 0.20706 0.20660 0.20612 0.20562

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

16.67129 14.67989 16.67164 16.66489 16.63865 16.60514 16.56913 16.53219

0.20721 0.18813 0.20714 0.20695 0.20641 0.20579 0.20523 0.20466

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

26.51817 29.22734 26.46858 26.41662 26.30669 26.19112 26.07247 25.95251

0.20825 0.19084 0.20805 0.20783 0.20730 0.20673 0.20615 0.20555

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

33.22040 30.50589 33.15650 33.08963 32.94848 32.80035 32.64848 32.49510

0.20831 0.18550 0.20809 0.20786 0.20731 0.20671 0.20609 0.20551

P-AS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

P-KS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

500

800

1,000

100

300

2% 3% 4%
SPLD

 SPLD 

with Boot  

DCP 

5%0.50% 1%
Item n

2A
D

2A
D

2A
D

2A
D

2A
D

2A

 

 


