
 

Far East Journal of Mathematical Sciences (FJMS) 
© 2013 Pushpa Publishing House, Allahabad, India 
Published Online: March 2014 
Available online at http://pphmj.com/journals/fjms.htm 
Special Volume 2013, Part VI, Pages 597-604 
(Devoted to articles on Comput. Sci., Info. Sci., Financial Manag. & Biol. Sci.) 

Received: November 27, 2013;  Accepted: January 3, 2014 
2010 Mathematics Subject Classification: 91B30. 
Keywords and phrases: surplus process, ruin probability, minimum initial capital, separated 
claim. 

∗Corresponding author 

ON APPROXIMATING THE RUIN PROBABILITY 
AND THE MINIMUM INITIAL CAPITAL OF THE 
FINITE-TIME RISK PROCESS BY SEPARATED 
CLAIM TECHNIQUE OF MOTOR INSURANCE 

W. Klongdee1,∗, P. Sattayatham2 and S. Boonta2 
1Risk and Insurance Lab 
Department of Mathematics 
Faculty of Science 
Khonkaen University 
Khonkaen 40002, Thailand 
e-mail: kwatch@kku.ac.th 

2School of Mathematics 
Institute of Science 
Suranaree University of Technology 
Nakhon, Ratchasima 30000, Thailand 

Abstract 

In this paper, we study the minimum initial capital problem of an 
insurance company which has to hold the initial capital for ensuring 
that the ruin probability was not greater than the given quantity in the 
discrete-time risk processes. We separate claim severities into standard 
and large claim severities and consider the insolvency of the company 
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with the ruin probability which is approximated by a simulation 
approach. Finally, the minimum initial capital is computed by the 
regression analysis. 

1. Introduction 

In the classical risk process, we consider claim severity nY  occurred          

at the times nT  such that .0 21 ≤≤≤ TT  Thus the probability of 

insolvency (ruin) is only occurred at claim time ., N∈nTn  The discrete time 

risk process is defined by 

 ∑
=

==−+=
n

k
knn nuUYcTuU

1
0 ...,,3,2,1;,  (1) 

where 0≥u  is an initial capital, 0>c  is a premium rate for one unit time. 
In 2006, Chan and Zhang considered the discrete time risk process under the 
assumption .nTn =  Then the risk process (1) becomes 
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where { }N∈nYn ,  is an independent and identically distributed (i.i.d.) claim 

severity process. The recursive and explicit formulas of the ruin probabilities 
were proposed with exponential and geometric claim severities. In 2013, 
Sattayatham et al. generalized the recursive formula of the ruin probability 
and introduced the minimum initial problems, controlling the ruin probability 
not exceed a given quantity. 

In this paper, we assume that an insurance company is allowed to invest 
in a risk-free asset with a constant interest rate r for one unit time. Research 
models of this paper are two discrete time risk processes. The first process is 
given by 

 ( ) ...,,3,2,1;,1 01 ==−++= − nuUYcrSS nnn  (3) 

where 0≥u  is an initial capital, 0>c  is a premium rate for one unit time 
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and { }N∈nYn ,  is an i.i.d. claim severity process. Moreover, in the process 

(3), the claim severity nY  is separated into two types of claims, standard 

claim severities ( )nV  and large claim severities ( ).nW  The criteria of 

separation is the mean (average) of claim severities. We shall construct the 
second process (eq. (4)) under the assumption that the standard claim and 

large claim are not occurred at the same time. We let ,1
l
n

l
nn TTZ −−=  where 

l
nT  is the arrival time of nth large claim. Therefore, the second process is 

given by 
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Throughout this paper, we assume that all of processes, { },, N∈nYn  

{ },, N∈nVn  { }N∈nWn ,  and { }N∈nZn ,  are assumed to be i.i.d. and 

mutually independent. Next, we define the ruin probability of the discrete 
time risk processes (3) and (4), the probability of event that the surplus ever 
falls below zero before the time N, by 

( ) ( )( )uSNkSPu kN =|=<=Ψ 0...,,3,2,1somefor0  

and 

( ) ( )( ),0...,,3,2,1somefor0 uUNkUPu kN =|=<=Φ  

respectively. 
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2. Main Results 

2.1. Data 

We consider the data set of motor insurance claims for the year 2009 of 
an insurance company in Thailand; all types of vehicle, i.e., automobiles, 
lorries and motorcycles are included. We choose the considered data from a 
type of this company such that its claims are occurred in every day. These 
data are separated into the two kinds; standard and large claim severities       
by using the mean criteria. We show standard and large claim severities in 
Figure 1. 

 

Figure 1 

2.2. Parameter estimation 

We compare the chi-squared value of the following distributions;            
log-normal, log-logistic, Burr, Weibull, exponential, gamma and Pareto 
distribution for the non-separated claim, the standard claim and large claim. 
Using the maximum likelihood estimator (MLE), we found that the non-
separated claim accepts the lognormal distribution (2P), standard claim 
accepts Weibull distribution (2P) and large claim also accepts Weibull 
distribution (3P) with the smallest chi-squared value at 95% confidence. 
Next, the parameters of chosen distributions are improved by minimizing the 
chi-squared value with a randomized neighborhood search (RNS) approach. 
The results are shown in Table 2. 



Minimum Initial Capital with Separated Claim Severities 601 

Table 2. Parameter estimations 

Data Probability density 

Function ( )xf  

MLE Chi-squared 
value 

RNS Chi-
squared 
value 

0630.11=µ  0579.11=µ  Non-separated 
claim: 
Log-normal 
distribution (2P) 

2ln
2
1

2
1 







σ
µ−−

πσ

x

e
x

 
9939.0=σ  

5.8476 
9506.0=σ  

 

1.1528 

8864.1=α  7548.1=α  Standard claim: 
Weibull  
distribution (2P) 

α






β

−−α






ββ

α
x

ex 1
 

00.55085=β
7.1221 

61.55178=β

 

5.0267 

7548.0=α   6484.7=α   

00.101150=β 7.6484 80.101131=β  5.2890 

Large claim: 
Weibull  
distribution (3P) 

α







β
γ−−−α








β
γ−

β
α

x

ex 1
 

86.105163=γ  86.105163=γ   

In this research, we assume that kZ  is Poisson distribution and obtain 

the estimated parameter 4187.3=λ  by the MLE. 

2.3. Simulation results 

The simulation results are carried with 10,000 paths for the surplus 
processes (3) and (4) when 365=N  and initial capital ,0=u  20,000, 

40,000, …, 1,320,000 Baht. Figure 3 and Figure 4 explain the relation 
between ruin probabilities and the initial capitals; the top curves of these 
figures show the relation in case ,1.0=θ  the next curves show the relation 

in case 2.0=θ  and so on to the bottom curves show the relation in case 
,0.1=θ  respectively. 
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Figure 3. Ruin probability and initial
capital in case of %2=r  (non-
separated claim). 

Figure 4. Ruin probability and initial 
capital in case of %2=r (separated 
claim). 

From Figures 3 and 4, we consider the relation of ruin probability 
( )365,uΦ  and initial capital u as an exponential function, 

 ( ) ( ),exp365, uu δ−γ=Φ  (5) 

when γ and δ are approximated by exponential regression. Finally, we set the 
maximum acceptable risk with corresponding to the risk α. Therefore, under 
the regulation that the ruin probability has to be not greater than α, the initial 

capital has to satisfy the inequality, .ln1







γ
α

δ
−≥u  

In case of non-dangerous portfolio or the premium rate is highly enough, 
the initial capital u may be negative. This means that this portfolio is not 
necessary to have the initial capital. Therefore, the minimum initial capital 
(MIC) is given by 

 .lnln,0max






δ
α−γ=MIC  (6) 

Table 5 shows the insurance company has to hold the MIC for ensuring 
the ruin probability is not greater than 01.0=α  with interest rate %.2=r  
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Table 5. MIC (Baht) in case 01.0%,2 =α=r  

Non-separated claim Separated claim Safety 
loading 

θ 
Premium rate c

(Baht) 
MIC 

(Baht) 
Premium rate c

(Baht) 
MIC 

(Baht) 

0.1 109,647.98 3,607,340 122,551.64 1,253,549 
0.2 119,615.98 2,168,608 133,692.70 1,251,732 
0.3 129,583.98 1,649,868 144,833.75 1,233,700 
0.4 139,551.98 1,371,444 155,974.81 1,221,933 
0.5 149,519.98 1,213,687 167,115.87 1,222,011 
0.6 159,487.98 1,109,112 178,256.93 1,211,145 
0.7 169,455.97 1,014,798 189,397.99 1,193,560 
0.8 179,423.97 936,609 200,539.04 1,193,374 
0.9 189,391.97 877,268 211,680.10 1,167,647 
1.0 199,359.97 827,780 222,821.16 1,168,583 

The premium rates c in Table 5 are computed by the expected value 

premium principle, i.e., ( ) [ ]11 YEc θ+=  and ( ) 




 +θ+= 1

1
11 EVEZ

EWc  in 

the case of non-separated and separated claims, respectively. 

From Table 5, we perform linear regression analysis between the 
premium rate and the MIC. The results are shown in Figure 6. 

 

Figure 6. MIC with the premium rate %.2,01.0 ==α r  
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3. Discussions 

From Figure 6, we can conclude that the separated claim method is better 
than non-separated claim method in the view of the sensitivity analysis. 
Nevertheless, in the view of the fair decision for insured (customers), the 
insurer ought to choose the minimum initial capital as follows: 

( )

( )



>−

≤−
=

,046,160if,126190000007420.0exp25.974,376,1

046,160if,4126380000142319.0exp67.139,928,11

xx

xx
MIC  

where 046,160=x  is the intersection point of two curves. 
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