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a b s t r a c t

In this paper, we introduce an approximate approach to the fractional integrated
GARCH(1,1) model of continuous time perturbed by fractional noise. Based on the L2-
approximation of this noise by semimartingales, we proved a convergence theorem
concerning an approximate solution. A simulation example shows a significant reduction
of error in a fractional stock price model as compared to the classical stock price model.

© 2008 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Risk in a financial market is measured by using volatility. So predictability of volatility has important implications for
risk management. If volatility increases, so will Value At Risk (VAR). Investors may want to adjust their portfolio to reduce
their exposure to those assets whose volatility is predicted to increase. One method that is widely employed for volatility
estimation is to use GARCH models. A discrete time GARCH(1,1) model is a model of the form

νk+1 = ω0 + βνk+1 + ανkU2k , Xk = σkUk (1)

where σk =
√
νk, and α, β are weight parameters,ω0 is a parameter related to the long-term variance, and UK is a sequence

of independent normal random variables with zero mean and variance of 1.
It is well known that GARCH models are not designed for long range-dependence (LRD). But there are some empirical

studies showing that log-return series (Xt) of foreign exchange rates, stock indices and share prices exhibit the LRD effect
(see, for example, Mikosch and Starica (2003, page 445)). In 1990, Nelson (1990) showed that as the time interval decreases
and become infinitesimal, Eq. (1) can be changed to

dvt = (ω − θvt)dt + ξvtdWt (2)

where vt = σ 2t is the stock-return variance, ω, θ and ξ are weight parameters and Wt is a standard Brownian motion
process. To be more accurate, there is a weak convergence of the discrete GARCH process to the continuous diffusion limit.
The purpose of this paper is to introduce LRD effect into GARCHmodels of continuous time (i.e., into Eq. (2)). The importance
of this process in finance is that it can be used to forecast volatility and risk of some financial instruments.
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Recall that a fractional Brownian motion process WHt , with Hurst index H , is a centered Gaussian process such that its
covariance function R(t, s) = EWHt W

H
s is given by

R(s, t) =
1
2
(|t|γ + |s|γ − |t − s|γ )

where γ = 2H and 0 < H < 1. IfH = 1
2 , thenW

H
t is the usual standard Brownianmotion process. ForH 6=

1
2 ,W

H
t is neither

a semimartingale nor a Markov process so we cannot apply the standard stochastic calculus for this process. It is a process
of long range dependence in the following sense: If ρn = E[WH1 (W

H
n+1)−W

H
n ], then the series

∑
∞

n=0 ρn is either divergent
or convergent with very late rate. It is known that a fractional Brownian motionWHt can be decomposed as follows:

WHt =
1

Γ (1+ α)

[
Zt +

∫ t

0
(t − s)αdWs

]
,

where Γ is the gamma function, Zt =
∫ 0
−∞
[(t − s)α − (−s)α]dWs, α = H − 1

2 , andWt is a standard Brownian motion.
We suppose from now on 0 < α < 1

2 so that
1
2 < H < 1. Then Zt has absolutely continuous trajectories and it is the term

BHt :=
∫ t
0 (t − s)

αdWs that exhibits long range dependence. We will use BHt instead ofW
H
t in fractional stochastic calculus.

In Thao (2006) constructed an approximate process Bεt of B
H
t as follows:

Bεt =
∫ t

0
(t − s+ ε)H−

1
2 dWs

where 12 < H < 1, andWt is a standard Brownian motion. He also proved that B
ε
t → BHt in L

2(Ω) as ε→ 0 (uniformly in t)
and Bεt is a semimartingale. These results give us a convenient way to study fractional Brownian motions since we can use
the standard Ito integrals and then it is easy to do numerical approximation.
By a fractional integrated GARCH model of continuous time (FIGARCH), we shall mean a process of the form

dvt = (ω − θvt)dt + ξvtdBHt (3)

where 0 ≤ t ≤ T , ω, θ and ξ areweight parameters, and BHt is a fractional Brownianmotion. For each ε > 0, an approximate
model of the FIGARCH model is a process of the form

dvεt = (ω − θv
ε
t )dt + ξv

ε
t dB

ε
t (4)

where Bεt is the approximate process of B
H
t . We shall show that its solution converges to the solution of the FIGARCH

model (3).
Moreover, geometric Brownian motion for the asset price was used to simulate the SCB stock prices where the volatility

of this model was predicted from an approximate fractional variance process of GARCH(1,1) model in continuous time and
classical GARCH(1,1) model in continuous time. And both of themwere compared with the empirical historical stock prices
of SCB.

2. Solutions of the approximate models

In this section, we are interested in finding a solution of the approximate model (4) together with initial condition
vεt(t=0) = v0.
Let ε > 0. Recall that an approximated process Bεt is defined by

Bεt =
∫ t

0
(t − s+ ε)αdWs,

where α = H − 1
2 , 0 < H < 1, andWt is a Brownian motion process. By an application of the stochastic Fubini Theorem,

one gets∫ t

0

∫ s

0
(s− u+ ε)α−1dWuds =

∫ t

0

∫ t

u
(s− u+ ε)α−1dsdWu

=
1
α

∫ t

0
((t − u+ ε)α − εα)dWu

=
1
α

[∫ t

0
(t − u+ ε)αdWu − εα

∫ t

0
dWu

]
=
1
α
[Bεt − ε

αWt ].

Consequently

Bεt = α
∫ t

0
ϕεs ds+ ε

αWt
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where

ϕεt =

∫ t

0
(t − s+ ε)α−1dWs.

Thus we have

dBεt = αϕ
ε
t dt + ε

αdWt . (5)

Substituting dBεt from (5) into (4), then Eq. (4) can be rewritten into the following form

dvεt = (ω − θv
ε
t )dt + ξv

ε
t (αϕ

ε
t dt + ε

αdWt),

= (ω − θvεt + ξαϕ
ε
t v
ε
t )dt + ξv

ε
t ε
αdWt . (6)

Theorem 1. For any ε > 0, a solution of the approximate model (4) is given by

vεt = exp
(
ξBεt −

(
θ +

1
2
ξ 2ε2α

)
t
)(

vε0 + ω

∫ t

0
e
(
θ+ 12 ξ

2ε2α
)
s−ξBεs ds

)
, (7)

where− 12 < α < 1
2 and B

ε
t =

∫ t
0 (t − s+ ε)

αdWs.

Proof. To find a solution of (6), we look for a solution of the form

vεt = UtVt

where

dUt = (−θ + ξαϕεt )Utdt + ξε
αUtdWt

and

dVt = atdt + btdWt .

Firstly, we shall find a solution of dUt = (−θ + ξαϕεt )Utdt + ξε
αUtdWt . By an application of the Ito formula to the

function f (u) = ln u for u = Ut , one gets

d (lnUt) =
1
Ut
dUt −

1
2U2t

(dU)2

=
1
Ut

(
(−θ + ξαϕεt )Utdt + ξε

αUtdWt
)
−
1
2U2t

(ξ 2ε2αU2t dt)

=

(
−θ + ξαϕεt −

1
2
ξ 2ε2α

)
dt + ξεαdWt

or, equivalently,

lnUt − lnU0 = ξα
∫ t

0
ϕεs ds−

(
θ +

1
2
ξ 2ε2α

)
t + ξεαWt .

That is

Ut = U0 exp
(
ξα

∫ t

0
ϕεs ds−

(
θ +

1
2
ξ 2ε2α

)
t + ξεαWt

)
. (8)

Set U0 = 1 and V0 = vε0 . Taking the differential of the product, we get

d (UtVt) = UtdVt + VtdUt + dUtdVt
= Ut (atdt + btdWt)+ Vt

(
(−θ + ξαϕεt )Utdt + ξε

αUtdWt
)
+ ξεαUtbtdt

=
(
Utat + Vt(−θ + ξαϕεt )Ut + ξε

αUtbt
)
dt + (Utbt + VtξεαUt) dWt .

Since vεt = UtVt then

dvεt =
(
Utat + (−θ + ξαϕεt )v

ε
t + ξε

αUtbt
)
dt +

(
Utbt + ξεαvεt

)
dWt . (9)

Comparing the coefficients of Eq. (9) with Eq. (6), we see that the desired coefficients at and bt turn out to satisfy the
following equations

Utbt = 0
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and

Utat + ξεαUtbt = ω.

Then bt = 0 and at = ω
Ut
. Hence

Vt := V0 +
∫ t

0
atdt +

∫ t

0
btdWt = vε0 +

∫ t

0

ω

Us
ds.

Moreover, vεt is found to be

vεt := UtVt = Ut

(
vε0 +

∫ t

0

ω

Us
ds
)
.

Hence, with U0 = 1 and using Ut as in (8), the solution of vεt is given by

vεt = exp
(
ξα

∫ t

0
ϕεs ds−

(
θ +

1
2
ξ 2ε2α

)
t + ξεαWt

)(
vε0 + ω

∫ t

0
e
(
θ+ 12 ξ

2ε2α
)
s−ξεαWs−ξα

∫ s
0 ϕ

ε
ududs

)
.

This proves Theorem 1. �

3. Convergence of the solutions of an approximate model

To prove the convergence of vεt , firstly, let us consider the process vt which satisfies Eq. (2). Let Xt = ln vt . It follows from
the Ito formula that

dXt =
(
ωe−Xt −

ξ 2

2
− θ

)
dt + ξdWt . (10)

The fractional model of the process Xt is a process which is of the form

dXt =
(
ωe−Xt −

ξ 2

2
− θ

)
dt + ξdBHt , (11)

where BHt is a fractional Brownian motion. Then an approximated model of (11) is of the form

dXεt =
(
ωe−X

ε
t −

ξ 2

2
− θ

)
dt + ξdBεt (12)

where Bεt has already been defined in Section 1.

Theorem 2. The solution of (12) converges to the solution of (11) in L2(Ω) uniformly with respect to t ∈ [0, T ] as ε→ 0.

Proof. We note that Eqs. (11) and (12) give

Xt − Xεt = ω
∫ t

0

(
e−Xs − e−X

ε
s
)
ds+ ξ

(
BHt − B

ε
t

)
. (13)

Let ‖·‖ denote the norm in L2(Ω). It follows from (13) that∥∥Xt − Xεt ∥∥ = ∥∥∥∥ω ∫ t

0

(
e−Xs − e−X

ε
s
)
ds+ ξ

(
BHt − B

ε
t

)∥∥∥∥
6 |ω|

∫ t

0

∥∥∥e−Xs − e−Xεs ∥∥∥ ds+ |ξ | ∥∥BHt − Bεt ∥∥ .
Since e−x is differentiable and bounded on every compact interval, then∥∥Xt − Xεt ∥∥ 6 |ω| ∫ t

0
K1
∥∥Xs − Xεs ∥∥ ds+ |ξ | ∥∥BHt − Bεt ∥∥ (14)

for some constants K1 > 0. Referring to a result Thao (2006, page 127), one gets∥∥BHt − Bεt ∥∥ ≤ C(α)ε 12+α, (15)

where 0 < α < 1
2 for

1
2 < H < 1 and−

1
2 < α < 0 for 0 < H < 1

2 , and C(α) is a positive constant depending only on α.
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It follows from (14) and (15) that∥∥Xt − Xεt ∥∥ 6 |ω|K1 ∫ t

0

∥∥Xs − Xεs ∥∥ ds+ |ξ |C(α)ε 12+α. (16)

Applying Gronwall’s lemma to (16), then∥∥Xt − Xεt ∥∥ 6 |ξ |C(α)ε 12+αe|ω|K1t .
Therefore

sup
0≤t≤T

∥∥Xt − Xεt ∥∥ 6 |ξ |C(α)ε 12+αe|ω|K1T → 0

as ε→ 0. So Xεt → Xt in L2(Ω) as ε→ 0 and uniformly with respect to t . �

Theorem 3. If Xεt → Xt in L2(Ω) uniformly with respect to t ∈ [0, T ] as ε→ 0, then vεt → vt in L2(Ω) uniformly with respect
to t ∈ [0, T ] as ε→ 0.

Proof. It follows from Xt = ln vt , so vt = eXt that∥∥vt − vεt ∥∥ = ∥∥∥eXt − eXεt ∥∥∥ .
Since ex is differentiable and bounded in some closed interval, then∥∥vt − vεt ∥∥ ≤ K2 ∥∥Xt − Xεt ∥∥
for some positive constant K2. From (15), we obtain∥∥vt − vεt ∥∥ 6 K2|ξ |C(α)ε 12+αe|ω|K1t .
Therefore

sup
0≤t≤T

∥∥vt − vεt ∥∥ 6 K2|ξ |C(α)ε 12+αe|ω|K1T → 0

as ε→ 0. The proof is now complete. �

4. Applications

In this section, volatilities of the stock of Siam Commerical Bank (SCB) are computed by using FIGARCH(1,1) model and
classical GARCH(1,1) model of continuous time. Then SCB stock prices are simulated by using these volatilities. After that
both simulated SCB stock prices are compared with the empirical historical prices of SCB.

4.1. SCB simulated stock prices

A model for the dynamic of an asset price that will be considered here is of the form

dSt = µStdt + σtStdWt ,

where µ is known as the drift rate or rate of return of the price St and Wt is a Brownian motion. The stochastic volatility
σt (which measures the standard deviation of the return dStSt ) is defined by σt :=

√
vt where vt is the FIGARCH model of

continuous time as in Eq. (3). For comparative purposes, we shall compute the percentage error (PE) between two sets of
data by the following formula

PE =
1
K

K∑
i=1

|Xi − Yi|
Xi

× 100,

where K is sample size, X = (Xi, i ≥ 1) is the market prices and Y = (Yi, i ≥ 1) is the model prices. We use K = 245 when
we sample data for 12 months.
For simulation purposes, we consider an approximate model

dSεt = µS
ε
t dt + σ

ε
t S

ε
t dWt , (17)

with ε > 0 and σ εt =
√
vεt . The fractional variance process vεt will be simulated by using Eq. (7), i.e.,

vεt = exp
(
ξBεt −

(
θ +

1
2
ξ 2ε2α

)
t
)(

vε0 + ω

∫ t

0
e
(
θ+ 12 ξ

2ε2α
)
s−ξBεs ds

)
. (18)
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Table 1
Discrete parameters ωh, βh and αh of each dataset.

Months Dataset (DD/MM/YY) ωh βh αh

1 1/12/2006–28/12/2006 0.0033 0 0.1689
3 2/10/2006–28/12/2006 0.0012 0 0.1154
6 3/7/2006–28/12/2006 0.00077659 0 0.0887
9 3/4/2006–28/12/2006 0.00071251 0 0.0726
12 3/1/2006–28/12/2006 0.00062672 0 0.0692

Table 2
Parameters ω, θ and ξ obtained from each dataset.

Months Dataset (DD/MM/YY) ω θ ξ

1 1/12/2006–28/12/2006 0.0033 0.8311 0.2389
3 2/10/2006–28/12/2006 0.0012 0.8846 0.1632
6 3/7/2006–28/12/2006 0.00077659 0.9113 0.1254
9 3/4/2006–28/12/2006 0.00071251 0.9274 0.1027
12 3/1/2006–28/12/2006 0.00062672 0.9308 0.0979

Table 3
Average PE for each set of parameters.

Parameters ω θ ξ Average of PE (%)

1 0.0033 0.8311 0.2389 40.5099
2 0.0012 0.8846 0.1632 24.0161
3 0.00077659 0.9113 0.1254 19.3196
4 0.00071251 0.9274 0.1027 18.3600
5 0.00062672 0.9308 0.0979 17.3366

The actual stock prices of Siam Commercial Bank (SCB) were obtained from http://www.tiscoetrade.com. Using the
dataset from January 3, 2006 to December 28, 2007. We divide these data into two disjoint sets. The first one, from January
3, 2006 to December 28, 2006, will be used to estimate parameters ω, θ , and ξ for Eq. (18). The second set (January 3,
2007–December 28, 2007) will be used for comparison with the simulated prices.
We begin by estimating parameters ω, θ and ξ . To do this, we firstly enter the following 5 datasets, i.e., 1 month

(December 1, 2006–December 28, 2006), 3months (October 2, 2006–December 28, 2006), 6months (July 3, 2006–December
28, 2006) and 12 months (January 3, 2006–December 28, 2006) into Matlab 6.5 (GARCH Toolbox) with COMPAQ Presario
B1908TU to obtain discrete parameters of GARCH(1,1) model (ωh, βh and αh). Those discrete parameters from each datasets
are shown in Table 1.
Secondly, we utilize the formulas between discrete parameters and continuous parameters which have been given

by Nelson (1990) to estimate the parameters ω, θ and ξ . The formulas are as follows:

ω = h−1ωh,
θ = h−1(1− βh − αh),

ξ =
√

2h−1αh,

where h is the time lag between two consecutive data. Here we use h = 1. Thus the estimated parameters ω, θ and ξ for
each dataset (1, 3, 6, 9 and 12 months) are given in Table 2.
From the information in Table 2, we look for those parameters which can give us the mimum average of PE. In order to

solve this problem, we simulated vεt (see, Eq. (18)) by using the parameters ω, θ and ξ from each dataset (1, 3, 6, 9 and 12
months). Here, we choose ε = 0.0001, α = 0.15, µ = 0.0017819 and vε0 = 0. Then, by using σ

ε
t =

√
vεt , the SCB stock

prices from January 3, 2007 to December 28, 2007 were forecast by the pricing model Sεt (see, Eq. (17)). Next, we compute
PE by using the information from the simulation and the empirical data of SCB closing prices (January 3, 2007–December
28, 2007). For each set of parameters, we calculated the average of PE for 5000 paths. The results are shown in Table 3.
It can be seen from Table 3 that the parameters ω = 0.00062672, θ = 0.9308 and ξ = 0.0979 give us the minimum

value of the average PE. We select this set of parameters for forecasting the future stock prices of SCB. In summary, when
the SCB stock prices were simulated by Eq. (17) using parameters as mentioned above, the average of PE and its variance
will be given as follows:

average of PE = 17.3366%
variance = 43.0287%.

(19)

Recall that a GARCH(1,1) model of continuous time is of the form

dvt = (ω − θvt)dt + ξvtdWt , (20)
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Fig. 1. Price behaviour of SCB, between January 3, 2007 andDecember 28, 2007, comparedwith a scenario simulated from fractional pricingmodel (dashed
line := empirical data, solid line := simulated by dSεt = µS

ε
t dt + σ

ε
t S

ε
t dW t , PE = 6.0401%).

Fig. 2. Price behaviour of SCB, between January 3, 2007 and December 28, 2007, compared with a scenario simulated by pricing model (dashed line :=
empirical data, solid line := simulated by dSt = µStdt + σtStdWt , PE = 6.9627%).

and the pricing model is

dSt = µStdt + σtStdWt , (21)

where σt =
√
vt .

We simulated the pricing model (21) by using ω = 0.00062672, θ = 0.9308, ξ = 0.0979, µ = 0.0017819, v0 = 0 and
K = 245. We compute the PE of these simulation prices and the empirical data of SCB closing prices from January 3, 2007
to December 28, 2007. Next we compute the average of PE, by using N = 5000, and found that

average of PE = 21.6536%
variance = 69.2135%.

(22)

By comparing the average PE and its variance by Eq. (19) and (22), one can see that in the case of SCB, the forecast of the
future stock prices by using model (17) (which includes the fractional part) give an average error significantly smaller than
using model (21) (which does not includes the fractional part).
For an illustration, Fig. 1 shows the empirical data of SCB as compared to the price simulated by the fractional pricemodel

(17). Here we used ε = 0.0001, α = 0.15, θ = 0.9308, ω = 0.00062672, ξ = 0.0979 and vε0 = 0. The percentage error
PE = 6.0401%.
Fig. 2, shows the empirical data of SCB as compared to the price simulated by the price model (21). Here we used

θ = 0.9308, ω = 0.00062672, ξ = 0.0979, µ = 0.0017819, v0 = 0 and σt =
√
vt . The percentage error PE = 6.9627%.

By comparing PE and variance of Figs. 1 and 2, one can see that in the case of SCB the sample path from the fractional
pricing model gives a better fit with the data than the ordinary pricing model, since the percentage error is smaller.
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