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Abstract. Clustering is a task of grouping data based on similarity. A popular 
k-means algorithm groups data by firstly assigning all data points to the closest 
clusters, then determining the cluster means. The algorithm repeats these two 
steps until it has converged. We propose a variation called weighted k-means to 
improve the clustering scalability. To speed up the clustering process, we 
develop the reservoir-biased sampling as an efficient data reduction technique 
since it performs a single scan over a data set. Our algorithm has been designed to 
group data of mixture models. We present an experimental evaluation of the 
proposed method.  

1   Introduction 

Clustering is the automatic grouping of data based on similarity. There exists a large 
number of clustering techniques, but the most classical and popular one is the k-means 
algorithm [1]. Given a data set containing n objects, k-means partitions these objects 
into k groups. Each group is represented by the centroid of the cluster. Once cluster 
representatives are selected, data objects are assigned to the nearest centers. The 
algorithm iteratively selects new better representatives and reassigns data objects until 
no change is made. At this point the algorithm is said to converge. Even though 
k-means is an effective clustering algorithm, it can sometimes converge to a local 
optimum. Many methods [2,3,4,5] have been developed to extend the k-means with the 
common objective of avoiding converging to a bad local optimum. Some methods 
[6,7,8] search for the best initialization because k-means is known to be sensitive to 
initial point selection. Other research [9] seeks for the global optimum, at the cost of 
computation. These researches try to solve the problem of sub-optimal clustering and 
estimation the appropriate number of clusters [10,11]. 

Another difficulty of clustering with k-means is that it fails to identify clusters with 
large variation in sizes since original large clusters tend to be split. Clustering 
algorithms, such as DBSCAN [12] and CURE [13], have been developed to overcome 
this kind of difficulty. DBSCAN associates a data point with its density obtained by 
counting the number of points in a region of radius . The algorithm discovers clusters 
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by connecting regions with sufficient high density, a MinPts threshold. DBSCAN 
works well in spatial clustering, but it is sensitive to the selection of  and MinPts and it 
fails to efficiently discover clusters with highly different densities. CURE algorithm 
represents a cluster by a set of points, instead of a single representative. Once the 
representative points are chosen, the algorithm then shrinks these points toward the 
centroid of the cluster according to a shrinking factor. CURE is an iterative 
hierarchical-based clustering that works well with discovering cluster of different sizes, 
but it is sensitive to the selection of representatives and shrinking factor. Moreover,  
with very large data set, these algorithms degrade considerably. 

When clustering massive data set, data reduction is an effective technique to speed 
up the algorithm. Sampling [14,15,16] is a powerful data reduction paradigm to remedy 
the inherent complexity of clustering. Uniform random sampling in which every data 
point has the same probability of being selected has been used extensively in data 
mining and databases [17,18,19,20]. In the case of data sets with large variation in 
cluster sizes, density biased sampling [21,22,23] tends to be a better scheme. In density 
biased sampling, the probability that a data point will be included in the sample is 
varied by the density of a cluster. 

Recent researches [21,22,23] propose several techniques to density biased sampling. 
Our work also follows this path with a step further on extending the k-means algorithm 
to work with a weighted sample. We propose an algorithm on density biased sampling 
based on the reservoir technique and a weighted k-means algorithm to cluster a data 
sample augmented with weights. The proposed algorithms are explained in Sections 2 
and 3, respectively. We present the experimental results in Section 4. The conclusion 
and our future work are discussed in Section 5. 

2   Data Reduction Biased by Density 

On scalable popular and successful clustering methods such as k-means to work against 
large data sets, many algorithms like BIRCH [24] and CLARANS [14] employ the 
sampling technique to minimize data sets. In BIRCH, a CF-tree structure is built after 
an initial random sampling step. The CF-tree is used as a summarized data structure 
with statistical representations of space regions stored on leaf nodes. After the phase of 
CF-tree building, any clustering algorithm can be applied to the leaf nodes. CLARANS 
also uses uniform sampling to derive initial representative objects for the clusters. 

The sampling technique used in these algorithms is uniform random sampling, 
which assigns every object the same probability of being included in the sample. But 
many data sets in real life do not follow the uniform distribution scheme. It instead 
seems to follow the Zipf s distribution [25], for instance, income and population 
distribution. In these data sets, some areas such as large metropolitan area have much 
higher population density than the small cities. If all the populations have equal 
opportunity of being selected as a representative, sparse areas may be missed and not be 
included in the sample.  
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2.1   Density-Biased Sampling  

Density biased sampling [21] is a sampling technique that takes into account the 
different sizes of the groups. Small groups or sparse regions are assigned higher 
probability to be included in the sample than the large groups or dense regions. By 
biasing the sampling process, small clusters will not be missed or overlooked as 
outliers. 

Recent advancement on clustering very large data sets in which summarized data 
structure is even too big to fit into main memory, sampling is independently applied to 
the data set prior to the subsequent clustering phase. Palmer and Faloutsos [21] develop 
a non-uniform sampling method for clusters that differ very much in size and density. 
Their method is a generalization of uniform random sampling in that every group of 
data sets can be assigned different probability of being drawn. When sampling is biased 
by group density, smaller groups are oversampling, whereas larger groups are under- 
sampling. Since clusters are not known a priori, Palmer and Faloutsos combine the 
phase of density information extraction with the biased sampling phase using the 
hash-based approach. They argue that the inherent collision problem of any hash-based 
approach will not dramatically degrade the sample. 

Nevertheless, their method is significantly affected by noise due to the tendency of 
oversampling noisy area. Our approach adopts the reservoir technique to eliminate the 
collision problem of hash-based approach and it is independent on the assumption 
regarding cluster distribution to avoid the impact of noise.   

2.2   Density-Biased Reservoir Sampling 

We propose a novel approach of adapting reservoir technique [26,27] to perform a 
density biased sampling on large data sets. Our algorithm can obtain a desired sample 
through a single data set scan. The proposed method is simpler and requires less 
resource than the hash-based method [21]. 

A reservoir-sampling algorithm [26,27] is a simple, unbiased random sampling 
algorithm for drawing a sample of size n without replacement from a population of size 
N (N 

 

n). Vitter [26] has developed a one-pass reservoir-sampling algorithm when the 
population size (N) is unknown and cannot be determined efficiently. The term 
reservoir defines a storage area j (j 

 

n, but mostly j = n) to store the potential 
candidates of the sample. The j reservoirs is initialized to store the first j records of the 
file, that is, all areas of the reservoir pool are initially filled up. Then the algorithm 
starts scanning the remaining part of the file with a randomly skipping step. The 
random picked record is evaluated whether to replace the existing one in the reservoir 
pool. If it passes the test, the position in the reservoir is also randomly selected. The 
process stops when the end of file has been reached and the records in the reservoir 
form a simple random sample of the population. The general procedure of 
reservoir-sampling algorithm [27,28] is given in Figure 1. 

The time complexity of the algorithm is shown [26,27] to be O(n (1+ log(N/n)). In 
the reservoir-sampling algorithm, each record of the file is assigned a uniform (0,1) 
random number. When the reservoir is needed to be updated, each record in the 
reservoir has the same chance to be replaced by the new record. 
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Algorithm Reservoir sampling       
      Input:     a sequential file of N population       
      Output:  a random sample of size n (n 

 

N)  

1)  Initialize the reservoir X1, ..., Xn to be the first n records of the file  
2)  Initialize W to be the largest value in a sample of size n from the uniform        

distribution on the interval (0, 1)  
3)  While not eof do  
4)       Generate the random variate S to denote the number of records to be skipped 

over before a new record can enter the reservoir  
5)        If  (not eof)  Then Search for the next potential record to be in the reservoir  
6)                             Else   return X1, ..., Xn  

7)        Update X and W  

Fig. 1. Reservoir-sampling algorithm  

Our sampling algorithm generalizes the reservoir scheme for the case of data with 
different density distribution. In our proposed method, the initial step of partitioning 
data into groups resembles that of Palmer and Faloutsos [21]. But our subsequent steps 
are not based on hashing scheme in order to avoid the effect of noise and collision 
problems. 

After the initial step of dividing the data space into bins of equal size, the informa- 
tion of the first n groups are put into the n reservoirs residing in main memory (see 
Figure 2a). The collected information includes the number of points in each group and 
the id of the group. 

The algorithm performs a single scan on a data set in a random manner controlled by 
a random variate S with the distribution W. The density biasing (step 7 in Figure 3) is 
achieved through the consideration of two consecutive data groups. If the density 
difference of the two data groups is above some threshold  (i.e., detecting cluster edge) 
or the sum of density on both groups is above the threshold value  (i.e., avoiding noisy 
cases), then the denser group is a candidate to be included in a sample. This new 
candidate is put into a reservoir pool at a random position (the reservoir update is 
pictorially shown in Figure 2b). The density-biased sampling proceeds until the 
skipping variate S reaches the end of the data groups. 

  

(a) initialize the reservoir (b) update reservoir randomly 

Fig. 2. Density biasing in a reservoir scheme 
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Algorithm Density-biased reservoir sampling       

     Input:     a data set of N objects       
     Output:  a  density-biased sample of size n (n 

 

N) associated with weight w  

1)  Partition data into g groups (with group-id 1,2,..., g), g 

 

n  

2)  Initialize the reservoir X1, ..., Xn to be the first n  <group-id, density>-pairs of the 
data groups  

3)  Set W  exp(log (random()) / n)            // initialize W that will be used in the                                                                     
                                                                             //  generation step of random variate S  
4)  Set  S 

 

 log (random()) / log(1-W) 

  

5)  While S < g  do  

6)       Read data groups gS  and  gS+1            // read two consecutive data groups  

7)       If  (||density(gS)  density(gS+1)|| >  ) OR ((density(gS) + density (gS+1)) > )                                                    

                                                            //   and  are predefined density threshold values     

 

          Then  X 1+  n  random ()    <group-id, density> of maximum density{gS , gS+1}                                             

                                                                 // randomized the reservoir area to be updated  

8)       W 

 

W  exp(log (random()) / n)          // update W for the skipping process     

9)       S 

 

 log (random()) / log(1-W)           // generate S to denote the number of  
                                                                                  // groups to be skipped over    
10) Return X1, ..., Xn 

Fig. 3. Density-biased reservoir sampling algorithm 

3   Weighted K-Means Algorithm 

The classical k-means algorithm [1] is a fast method to perform clustering. The 
algorithm consists of a simple re-estimation procedure as outlined in Figure 4.   

Algorithm K-means       

     Input:     a set of n data points, and the number of clusters (K)       
     Output:  centroids of the K clusters  

1)  Initialize the K cluster centers  

2)  Repeat   

                  Assign each data point to its nearest cluster center  

3)               Recompute the cluster centers using the current cluster memberships  

4)  Until  there is no further change in the assignment of the data points to new                 
cluster centers 

Fig. 4. K-means algorithm 
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The original n data points to be clustered are contained in the dataset X = {x1, ..., xn}. 
The k-means algorithm partitions n data points into K sets. The assignment of a data 
point xi to its nearest cluster center cj (step 2) is decided on the basis of the membership 
function, m(cj|xi). The function returns either one of the {0,1} values:  m(cj|xi) = 1 if  j = 
argmink||xi - ck||

2; it is zero, otherwise. In step 3, the new centroids of clusters can be 
computed from all data points xi in the cluster. The objective function J of the algorithm 
is to minimize the sum of error squared, J = i = 1:n minj 

 

{1..k} || xi - cj ||
2. 

In k-means algorithm, every data point has equal importance in locating the centroid 
of the cluster. This property does no longer hold in the case of density-biased sample 
clustering, for which each data point represents varied density in the original data. 
Therefore, the clustering algorithm has to consider a weight associated with each data 
point in the computation of cluster centers. The proposed extension to the k-means 
algorithm is called weighted k-means. Figure 5 outlines the algorithm.  

Algorithm Weighted k-means       

     Input:   a set of n data points obtained from the density-biased reservoir sampling, 
                 and the number of clusters (K)       
     Output:  centroids of the K clusters  

1)  Initialize the K cluster centers  

2)  Repeat   
                 Assign each data point to its nearest cluster center according to the 

membership function, 

m(cj|xi) =     || xi - cj ||
-p-2   

j = 1:k || xi - cj ||
-p-2  

3)              For each center cj, recompute the cluster center cj using the current cluster 
memberships and weights, 

cj = i = 1:n  m(cj|xi) w( xi) xi   

i = 1:n  m(cj|xi) w( xi)  

                   where w(xi)  is a weight associated with each data point 

4)  Until there is no reassignment of data points to new cluster centers 

Fig. 5. Weighted k-means algorithm  

The membership function in the weighted k-means algorithm resembles that of the 
k-harmonic means algorithm [5]. Zhang [5] also introduces the weight function, w( xi), 
in his algorithm to accelerate the recomputation of the new centroids in the next 
iteration. The weight function in our algorithm, however, is introduced for the different 
purpose. It represents the density of the original data points. 
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4   Experiments and Results 

We perform two sets of experiments to test the quality of our sampling method, which 
is the step prior to clustering, and to measure the quality of the weighted k-means 
algorithm. 

4.1   Performance of Density-Biased Reservoir Sampling  

We evaluate the performance of the proposed reservoir-based density bias sampling 
method against the hash-based sampling method [21]. The efficiency regarding 
memory usage of our reservoir-based sampling method is obviously better than the 
hash-based method. In the hashing scheme, some amount of memory is needed to store 
the hashing table in addition to the memory required for storing the drawn sample. Thus, 
it requires twice the amount of memory comparative to those required by our method. 

Effectiveness of the proposed sampling method is examined by measuring the 
quality of a sample with respect to the number of correctly found clusters. We run 
clustering using the k-means algorithm. We use a synthetic data generator to generate 
d-dimensional data sets having k clusters and N data points. We vary d  from 2 to 5, k 
from 2 to 10, and N from 5,000 to 100,000. 

The measurement Number of Clusters found (NC) is the metric defined in [21]. NC 
is calculated by comparing the distances of the cluster centers found by the clustering 
algorithm with the true cluster centers. We say that the cluster is found if the calculated 
distance is less than a predefined threshold (e.g., 0.001). 

The results in Figure 6 show the NC when run clustering on various sample sizes 
with the presence of noise. The reported results are observed from the experiments 
using 3-dimensional data set having 7 clusters. One cluster contains 50,000 points and 
the other six clusters contain 500 points. The results obtained from other experiments 
on data sets with different dimensions, various number of clusters, and varied number 
of data points are conformed with the one presented in Figure 6, so we omit them for 
brevity. The experimental results reveal the efficiency of the biased reservoir method 
especially in the presence of noise.  
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Fig. 6. Finding clusters of 3-dimensional data on various sample sizes, in the presence of noise 
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4.2   Performance of Weighted K-Means Algorithm  

We evaluate the quality of the weighted k-means algorithm against the k-means 
algorithm by using the squared objective function. Lower value of a squared objective 
function reflects a better quality on clustering. The experiments perform on the 
syntactic data sets explained in Section 4.1. The initialization step randomly selects 
data points as initial cluster centroids. We also consider running time of both 
algorithms.  

The performance evaluation as shown on top of Figure 7 is obtained from running 
k-means and weighted k-means algorithms on 3-dimensional data sets of sizes varied 
from 5000, 10000, 20000, 35000, 55000, 75000, to 100000 data points. The number of 
clusters is set to be 10. The experiments are performed on the PC computer with CPU 
speed 800 MHz, memory 512 MB. Since all data points are used in weighted k-means 
algorithm, the weight function is set to be 1. The parameter p in the membership 
function is set to be 1.3. 

The comparison on clustering quality and running time shown at the bottom of 
Figure 7 reveals the efficiency of running weighted k-means on density-biased sample. 
The experiments are performed on 10% sample of data with two methods of sampling: 
simple random sampling (RS) and density-biased reservoir sampling (DBS). The 
weight function of the weighted k-means algorithm is varied according to the density of 
the original data. 
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Fig. 7. Performance comparison of weighted k-means against k-means (left) and the running 
time comparison (right), results on top are experiments running on the whole data set while 
results at the bottom obtained from running on the sample data 
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5   Conclusions 

The k-means is the simplest and most commonly used clustering algorithm. The 
simplicity is due to the use of squared error as the stopping criteria, which tends to work 
well with isolated and compact clusters. Its time complexity depends on the number of 
data points to be clustered and the number of iteration. We propose a variation of the 
k-means to better work with a large data set having much difference in cluster density. 
Our intuition idea is that to cope with massive data set, sampling should be the efficient 
data reduction method. Since the original data is assumed to be much varied in cluster 
sizes, density-biased sampling is an appropriate method to preserve the density.  

We propose a density biased sampling technique based on the reservoir method. The 
inherent advantage of efficient memory usage in the reservoir scheme is adopted and 
extended with the additional capability of dealing with data that are much different in 
density distribution. The proposed technique is designed to lessen the effect of noise as 
it is the case in the hash-based approach. The experimental results have shown that the 
proposed method is as good as the hash-based method in discovering correct number of 
clusters. Our method, moreover, is less sensitive to noisy data even when the 
percentage of noise is greater than 20.  

We also develop the weighted k-means algorithm to better cluster a sample data 
biased by its density. The results demonstrate the efficiency of the algorithm. The 
evaluation of the proposed methods on real large databases and the consideration of 
outliers are our future work. 
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