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ABSTRACT

Exponential and asymptotic stability for a class of nonlinear dynamical systems with

uncertainties is investigated.  Based on the stability of the nominal system, a class of bounded

continuous feedback controllers is constructed.  By such a class of controllers, the results

guarantee exponential and asymptotic stability of uncertain nonlinear dynamical system.  A

numerical example is also given to demonstrate the use of the main result.

Index Terms : Control constraint, feedback control, stability, stabilization, uncertainty, un-

certain systems

Nomenclature

Rn n-dimensional real space

Rn×m Set of all real n by m matrices

AT Transpose of matrix A

A Induced Euclidean norm of matrix A

x Euclidean norm of x ∈Rn

∇xV(t, x) Gradient of smooth scalar function V(t, x)

a Absolute value of a real number a

Bρ (0) Ball in Rn of  radius ρ > 0  and center at the origin
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1. INTRODUCTION

In recent decades, the stability problem of nonlinear systems have been extensively studied ([1]-

[3] and [4]).  It is well known that the study of stability theory of nonlinear dynamical systems

is carried out by one of two Lyapunov methods, one is the Lyapunov’s linearization method,

and the other is the Lyapunov’s direct method which concerns with construction of the Lyapunov

function.  The stability problem has motivated the study of Lyapunov function in both finite ([3],

[5] and [6]) and infinite dimensional ([1] and [2]) spaces.  Here, the Lyapunov’s direct method

is used.  It is the purpose of this paper to investigate the exponential and asymptotic stabilization

for nonlinear dynamical systems with control constraint.

This paper is organized as follows.  In section II, a theorem which is a criterion for the expo-

nential and asymptotic stability is proposed.  Furthermore, based on this theorem, a bounded and

continuous state feedback control is proposed to guarantee the exponential and asymptotic

stability.  In section III, a numerical example is given to illustrate the use of our main result.

Finally, the conclusion follows in section IV.

2. PROBLEM FORMULATION AND MAIN RESULT

Consider a class of uncertain nonlinear dynamical systems described by the following state

equations:

ẋ(t) = f (t, x) + F(t, x).φ(t, x,u), t ≥ t0 ≥ 0

x(t0 ) = x0

(1)

where t ∈R+  is time, x(t)∈Rn  is the state vector, u(t)∈Rm is the control vector, and

φ(t, x,u)represents the system uncertainties.  The function, φ(⋅,⋅,⋅):[0,∞) × Rn × Rm → Rm ,
F(⋅,⋅):[0,∞) × Rn → Rn×m , and f (⋅,⋅):[0,∞) × Rn → Rn , are assumed to be continuous.

The corresponding system of (1) without uncertainties, called the nominal system, is described

by

ẋ(t) = f (t, x), t ≥ t0 ≥ 0

x(t0 ) = x0 .
(2)

We assume further that the equation (2) has a unique solution corresponding to each initial

condition and the origin is the unique equilibrium point.  The state feedback controller can be

represented by a nonlinear function in the form

u(t) = −γ (t, x)KT (t, x).

Now, the question is how to synthesize a state feedback controller u(t) that can guarantee the

asymptotic and exponential stability of nonlinear dynamical system (1) in the presence of un-

certainties φ (t,x,u).
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Before giving our synthesis approach, we give some definitions and prove sufficient conditions

for the asymptotic and exponential stability of system (2).

Definition 1. The equilibrium zero of (2) is stable if, for each ε > 0 and each, to ∈R+ ,
there exists a δ = δ (ε , t0 ) such that x0 ≤ δ (ε , t0 ) implies x(t, x0 ) ≤ ε ,∀t ≥ t0 ≥ 0.

Definition 2. The equilibrium zero of (2) is attractive if, for each, t0 ∈R+ ,there is an

η(t0 ) > 0 such that x0 ≤ η(t0 ) implies that the solution x(t, x0 )  approaches zero as t ap-

proaches infinity.

Definition 3. The equilibrium zero of (2) is asymptotically stable if it is stable and attractive.

Definition 4. The equilibrium zero of (2) is exponentially stable if there exist positive con-

stants,, ρ, k and γ such that

x(t, x0 ) ≤ k x0 e−γ (1− t0 ) , ∀t ≥ t0 = 0, ∀x0 ∈Bρ .

The following theorem provides sufficient conditions for the asymptotic and exponential stabil-

ity of system (2).

Theorem 1. Assume there exist a sufficiently smooth function V(t,x), positive constants

λ1,λ2 ,λ3,p and q such that, for all and for all t ≥ t0 ≥ 0 and for all x(t)∈Rn

λ1 x(t) p ≤ V(t, x(t)) ≤ λ2 x(t) q (3)

and the derivative of V along the solution of (2) satisfies

dV(t, x(t))
dt

= ∇tV(t, x(t)) +∇x
TV(t, x(t)) ⋅ f (t, x(t)) ≤ −λ3 x(t) q . (4)

Then the equilibrium point of the system (2) is asymptotically stable.  Moreover, it is exponentially

stable if p = q.

Proof. Let

Q(t, x(t)) = V(t, x(t))e

λ3
λ2

t
. (5)

Then, from (5), (4) and (3), we have

Q̇(t, x(t)) = V̇(t, x(t))e
λ3
λ2

t
+
λ3

λ2

V(t, x(t))e
λ3
λ2

t

≤ −λ3 x(t) q e
λ3
λ2

t
+
λ3

λ2

λ2 x(t) q e
λ3
λ2

t

≤ 0.

(6)
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Integrate both sides of (6), we have, for all t ≥ t0 ≥ 0

Q(t, x(t)) ≤Q(t0 , x(t0 )) = V(t0 , x(t0 , x(t0 ))e

λ3
λ2

t0
≤ λ2 x(t0 )

q
e

λ3
λ2

t0
. (7)

Hence, it follows from (3), (5), and (7), we get

x(t) ≤
V(t, x(t))

λ1











1/ p

=
Q(t, x(t))

λ1

e
−
λ3
λ2

t









1/ p

=
λ2 x(t0 )

λ1

q

e−
λ3
λ2

(t− t0 )










1/ p

= k x(t0 )
q / p

e−γ (t− t0 )

(8)

where k = 
λ2

λ1









1/ p

, γ =
λ3

λ2 p
.   Let ε > 0 be given and δ (ε , t0 ) =

ε
k







p / q

 then whenever

x0 ≤ δ (ε , t0 ) we have

x(t) ≤ k
ε
k

e−γ (t−t0 ) < ε , ∀t ≥ t0 ≥ 0.

Therefore, the equilibrium zero of (2) is stable.  Moreover, one can easily see that the right-

hand side of (8) approaches zero when t approaches infinity.  Hence, the equilibrium zero of (2)

is attractive and therefore asymptotically stable.  In particular, when p = q the inequality (8)

becomes

x(t) ≤ k x(t0 ) e−γ (t− t0 ) , ∀t ≥ t0 ≥ 0.

that is the equilibrium zero of (2) is exponentially stable.

We shall use Theorem 1 to fine the condition on u(t) that can guarantee the asymptotic and

exponential stability of nonlinear dynamical system (1).  Let us introduce for system (1) the

following assumptions:

(B1) The components of the control vector are physically limited by

u < ci , ∀i = 1,2,...,m (9)

with ci > 0, ∀i = 1,2,...,m.

(B2) There exist a sufficiently smooth function W(t,x), positive constants λ1,λ2 ,  p and q such

that for all x ∈Rn , for all t ≥ t0 ≥ 0, we have

λ1 x(t) p ≤ W(t, x) ≤ λ2 x(t) q
(10)
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and the derivative of W along the solution of the nominal system ẋ(t) = f (t, x)  satisfies

dW(t, x(t))
dt

= ∇tW(t, x(t)) +∇ T
X W(t, x(t)) ⋅ f (t, x(t)) ≤ 0 (11)

Remark :  The nominal system ẋ(t) = f (t, x) is stable with (B2) (See [3] pp.  53-54).

(B3) There exist positive continuous functions ε(t, x), f1(t, x), f 2 (t, x), f 3(t, x)and posi-

tive constants λ3  and α  such that

yT ⋅ φ1(t, x, y) ≥ − f1(t, x) y + f 2 (t, x) y
2 − f 3(t, x) y

3

+
λ3 f 2 (t, x) x(t) q

2 f 3(t, x) K + ε(t, x)[ ]
,

∀y ∈Rm , ∀x ∈Rn , ∀t ≥ to ≥ 0

(12)

where

f 2
2 (t, x) ≥ 4 f1(t, x) f 3(t, x), ∀x ∈Rn , ∀t ≥ t0 ≥ 0 (13)

f1(t, x) K ≤ α x q , ∀x ∈Rn , ∀t ≥ t0 ≥ 0 (14)

φ1(t, x, y):= φ(t, x,
2c1

π
tan−1 y1

2c2

π
tan−1 y2 ,...,

2cm

π
tan−1 ym ), (15)

y:= y1, y2 ,..., ym[ ]T ∈Rm , (16)

and

K(t, x) := FT (t, x)∇xW(t, x), ∀x ∈Rn , ∀t ≥ t0 ≥ 0.

Lemma 1. Under the assumptions (B2) and (B3), we have

f1 K − f 2γ K 2 + f 3γ
2 K 3 − α x(t) q ≤ 0, ∀x ∈Rn , ∀t ≥ t0 ≥ 0,

where

γ (t, x) :=
f 2 (t, x)

2 f 3(t, x) K + ε(t, x)[ ]
, ∀x ∈Rn , ∀t ≥ t0 ≥ 0

and

K(t, x) := FT (t, x)∇xW(t, x), x ∈Rn , ∀t ≥ t0 ≥ 0.
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Theorem 2. The system (1) satisfying the assumptions (B1)-(B3) is asymptotically stable and

if p = q it is exponentially stable under the control

ui (t) =
2ci

π
tan−1 yi (t)[ ], ∀i = 1,2,...,m. (17)

Here

y1(t), y2 (t),..., ym (t)[ ] = −γ (t, x)KT (t, x), (18)

γ (t, x) :=
f 2 (t, x)

2 f 3(t, x)( K + ε(t, x))
, (19)

and

K(t, x) := FT (t, x)∇xW(t, x), (20)

with α < λ3.

f1 K − f 2γ K 2 + f 3γ
2 K 3 − α x(t) q

= f1 K −
f 2

2 K 2

2 f 3( K + ε )
+

f 2
2 K 3

4 f 3( K + ε )2 − α x(t) q

=
4 f1 f 3 K 3 + 4 f1 f 32 K 2ε + 4 f1 f 3 K ε 2 − 2 f 2

2 K 3 − 2 f 2
2 K 2ε

4 f 3( K + ε )2

+
f 2

2 K 3

4 f 3( K + ε )2 − α x(t) q

=
− K 3 f 2

2 − 4 f1 f 3[ ]− 2ε K 2 f 2
2 − 4 f1 f 3[ ]

4 f 3( K + ε )2 +
4 f1 f 3 K ε 2

4 f 3( K + ε )2 − α x(t) q

=
f1 K ε 2 − α x(t) q ( K + ε )2

( K + ε )2

=
f1 K ε 2 − α x(t) q K 2 − 2α x(t) q K ε − α x(t) q ε 2

( K + ε )2

=
( f1 K − α x(t) q )ε 2 − α x(t) q K 2 − 2α x(t) q K ε

( K + ε )2

≤ 0.

Proof.
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Proof.  By (1) and (15)-(17), one has

ẋ(t) = f (t, x) + F(t, x) ⋅ (φ(t, x,u1,u2 ,...,um )

= f (t, x) + F(t, x) ⋅ φ(t, x,
2c1

π
tan−1 y1,

2c2

π
tan−1 y2 ,...,

2cm

π
tan−1 ym )

= f (t, x) + F(t, x) ⋅ φ(t, x, y), ∀x ∈D⊂ Rn , t ≥ t0 ≥ 0.

Let W(t,x) be a Lyapunov function candidate of (1) with (17)-(20).  The time derivative of

W(t,x) along the trajectories of the closed-loop system, using (B2), is given by

Ẇ = ∇tW +∇x
TW f + ⋅φ1[ ]

≤ ∇x
TWF ⋅ φ1.

(21)

From (12) and (18)-(19), we have

yT ⋅ φ1 ≥ − f1γ K + f 2γ
2 K 2 − f 3γ

3 K 3 + λ3γ x(t) q .

Multiply both sides by −
1
γ

 and from (18), and (20), we have

KT = ⋅φ1 = ∇x
TWF ⋅ φ1 ≤ f1 K − f 2γ K 2 + f 3γ

2 K 3 − λ3 x(t) q . (22)

Substitute (22) into (21), we get

≤ f1 K − f 2γ K 2 + f 3γ 2 K 3 − λ3 x(t) q + α x(t) q − α x(t) q

= −(λ3 − α ) x(t) q + f1 K − f 2γ K 2 + f 3γ 2 K 3 − α x(t) q .
(23)

Simplifying (23) by using (19)-(20), we get, by Lemma 1,

Ẇ ≤ −(λ3 − α ) x(t) q . (24)

By virtue of theorem 1, the proof is completed.

3. EXAMPLE

Consider the following uncertain nonlinear system:

ẋ(t) =
x2 − x1

3

−2x1 −
x 3

2

2









 +

x1

x2







 ⋅ a(t)u + b(t)u2 + c(t) tanu − 9{ } (25)
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where ∈R, x := (x1, x2 )T ∈R2 , −1≤ a(t) ≤ 1, −1≤ b(t) ≤ 1, and 4 ≤ c(t) ≤ 5 for all

t ≥ t0 ≥ 0.  The coefficients  a(t), b(t), and c(t) are arbitrarily chosen to satisfy (12)-(14).  The

control u is limited by −
π
2
< u(t) <

π
2

,and

Figure 1 :  The state trajectories of the feedback-controlled system for (25).

f (t, x) =
x2 − x1

3

−2x1 −
x2

3

2












, F(t, x) =

x1

x2







 ,

φ(t, x,u) = a(t)u + b(t)u2 + c(t) tanu − 9{ }.

Choose a positive functional

W(t, x) = 2x1
2 + x2

2 .

Then (10) and (11) are satisfied with λ1=1, λ2  = 2, p=2 and q=2.  In fact,

λ1 x p = x1
2 + x2

2 ≤ W(t, x) = 2x1
2 + x2

2 ≤ 2(x1
2 + x2

2 ) = λ1 x q
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From (15), we have

φ1(t, x, y) := φ(t, x, tan−1 y)

= a(t) tan−1 y + b(t)(tan−1 y)2 + c(t)y − 9.

Hence, in (12), we have

yT ⋅ φ1(t, x, y) = a(t) tan−1 y + b(t)(tan−1 y)2[ ]y + c(t)y2 − 9y

≤ −
π
2

+
π 2

4






 y + 5 y

2 − 9y

≥ −
π
2

+
π 2

4






 y + 5 y

2 − y
3 − 9y.

This suggests that in (12) we choose

f1 (t, x) =
π
2

+
π 2

4






 , f 2 (t, x) = 5, and f 3(t, x) = 1.

It follows that (13) is satisfied.  In fact,

f 2
2 (t, x) = 25 ≥ 4 f1(t, x) f 3(t, x) = 4

π
2

+
π 2

4






 ⋅1

≈ 16.15.

By (20) and (19), with ε(t,x) = 1, we obtain

K(t, x) = 4x1
2 + 2x2

2 ,

and

γ (t, x) =
5

2(4x1
2 + 2x2

2 + 1)
.

and

∇x
TW(t, x) f (t, x) =

∂
∂x1

,
∂
∂x2









W(t, x) ⋅ f (t, x)

= (4x1,2x2 )
x2 − x1

3

−2x1 −
x2

3

2













= 4x1,(x2 − x1
3 ) + 2x2 −2x1 −

x2
3

2








= −4x1
4 − x2

4 ≤ 0.
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Using (18), (12) becomes

yT ⋅ φ1(t, x, y) ≥ −
π
2

+
π 2

4






 y + 5 y

2 − y
3 + 9γK

= −
π
2

+
π 2

4






 y + 5 y

2 − y
3 +

9 ⋅5(4x1
2 + 2x2

2 )
2(4x1

2 + 2x2
2 + 1)

≥ −
π
2

+
π 2

4






 y + 5 y

2 − y
3 +

9 ⋅5 ⋅2(x1
2 + x2

2 )
2(4x1

2 + 2x2
2 + 1)

.

Thus (12) holds with λ3  = 18.  Choosing α = 17 ≤ λ3 , such that (14) holds, i.e.,

f1 K ≈ 4.03(4x1
2 + 2x2

2 ) ≤ 17(x1
2 + x2

2 ) = α x q .

Finally, owing to (17) and (18), it can be obtained that

u(t) = tan−1 y(t)[ ]
By Theorem 2, we conclude that (25) with the bounded control (26) is exponentially stable.

With a(t) = b(t) = 1, c(t) = 5, x1(0) = -0.70, x2(0) = 0.60, the state trajectories of the feedback-

controlled system is depicted in Fig. 1.  It can be seen from equation (26) that u(t) is bounded

by −
π
2

< u(t) <
π
2

.

4. CONCLUSION

In this paper, the exponential and asymptotic stabilization of nonlinear dynamical systems with

control constraint has been considered.  A bounded and continuous state feedback control for

the exponential and asymptotic stability for the closed-loop system is proposed.  Finally, a

numerical example has also been given to demonstrate the use of our main result.
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