
   

Abstract Data stream analysis is the process of computing 
various summaries and derived values from large amounts of data 
which are continuously generated at a rapid rate. The nature of a 
stream does not allow a revisit on each data element. Furthermore, 
data processing must be fast to produce timely analysis results. These 
requirements impose constraints on the design of the algorithms to 
balance correctness against timely responses. Several techniques 
have been proposed over the past few years to address these 
challenges. These techniques can be categorized as either data-
oriented or task-oriented. The data-oriented approach analyzes a 
subset of data or a smaller transformed representation, whereas task-
oriented scheme solves the problem directly via approximation 
techniques. We propose a hybrid approach to tackle the data stream 
analysis problem. The data stream has been both statistically 
transformed to a smaller size and computationally approximated its 
characteristics. We adopt a Monte Carlo method in the approxi-
mation step. The data reduction has been performed horizontally and 
vertically through our EMR sampling method. The proposed method 
is analyzed by a series of experiments. We apply our algorithm on 
clustering and classification tasks to evaluate the utility of our 
approach.  

Keywords Data Stream, Monte Carlo, Sampling, Density 
Estimation.  

I. INTRODUCTION 

ATA analysis is the process of computing various 
summaries and derived values from collected data. Data 

mining can be viewed as an intelligent data analysis aiming at 
extracting valuable knowledge from large amounts of 
information stored in data repositories [1], [3]. The techniques 
used in data mining have been adopted from the areas of 
machine learning and statistics, but scalable to deal with the 
problem of huge repositories of information. The recent 
advances in hardware and software have enabled the rapid 
generation of continuous stream of information such as custo-
mer click streams, telephone records, retail chain transactions,  

This work was supported by the Thailand Research Fund under Grant 
MRG4780170, the National Research Council, and Suranaree University of 
Technology for the sponsorship of Data Engineering and Knowledge 
Discovery Research Unit.  

Kittisak Kerdprasop is with the School of Computer Engineering, and the 
director of Data Engineering and Knowledge Discovery Research Unit  
Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand. 
(e-mail: kerdpras@ sut.ac.th).  

Nittaya Kerdprasop is with the School of Computer Engineering, and the 
member of Data Engineering and Knowledge Discovery Research Unit  
Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand. 
(e-mail: nittaya@ sut.ac.th). 

Pairote Sattayatham is with the School of Mathematics, Suranaree 
University of Technology, Nakhon Ratchasima 30000, Thailand. (e-mail: 
pairote@ sut.ac.th). 

web page visits, and so on. Mining stream data that grow at an 
unlimited rate poses a new challenge to researchers and 
practitioners in the area of data mining [1], [9]. 

Data stream is defined as massive amounts of data 
continuously generated at a rapid rate, possibly time-varying 
and unpredictable [2], [9]. Major characteristics of data 
streams are the continuously online arrival of data elements, 
uncontrolled order of such elements upon arrival, variable 
sizes, and a one-time processing of an element before it is 
discarded or archived due to the massive size of data that far 
exceeds the storage capacity. The requirements of timely 
analysis and efficient memory usage constrain most data 
stream mining algorithms to sacrifice accuracy of the analysis 
results for the fast and feasible processing.  

Development of approximation algorithms [5], [13] is a 
direct solution to the problem of data stream mining. 
However, the large volumes of data continuously arriving in a 
stream could eventually make the algorithms inefficient. A 
more practical solution is to apply a data reduction technique 
along with the approximation algorithms. Data summarization 
techniques, such as wavelet analysis [10] and histogram [2], 
have been proposed as synopsis data structures to provide a 
summary presentation of data. The issue of dynamic space 
allocation as the underlying data distribution changes over 
time is a fundamental problem of these approaches. Data 
stream analysis by choosing a subset of the incoming stream is 
another class of techniques for producing approximate results. 
Sampling is a statistical-based technique widely used to scale 
up the mining algorithms [7]. Nevertheless, in the context of 
data stream in which the data size is unknown, simply apply-
ing a sampling method cannot give reliable approximation.  

We, therefore, propose a Monte Carlo method to draw 
representatives from data stream. Monte Carlo simulation is a 
widely used method to produce a good approximation to the 
true value or quantity. Our algorithm has been designed to 
produce data elements from which the approximate analysis is 
close to the exact one. We perform cluster and classification 
analyses on several data sets to verify the reliability of the 
method.  

The paper is organized as follows. Section 2 presents the 
theoretical background of a general Monte Carlo method. 
Section 3 sketches the draft idea of density estimation from a 
sample. Our proposed method that is efficiently applicable to 
data stream analysis is explained in Section 4. Some of the 
experimental results from cluster and classification analyses 
over the reduced data stream are shown in Section 5. We 
conclude in Section 6 with a discussion for future work.   
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II.  PRINCIPLES OF MONTE CARLO 

Monte Carlo method is a class of stochastic algorithm for 
simulating the behavior of physical or mathematical systems 
[11], [14]. The term stochastic implies that the methods are 
non-deterministic in which they are based on the use of 
random numbers and probability statistics to investigate 
problem. To understand the method of Monte Carlo, it is 
useful to think of it as a general technique of numerical 
integration. Suppose we need to evaluate the d-dimensional 
integral of a function f over the unit interval 

1 1 1

1 2 1 2 (0,1)
0 0 0

... ( , ,..., ) ... ( ) .dn nf x x x dx dx dx f x dx

 

(1)

 

The integral is a non-random problem, but the Monte Carlo 
method represents the integral as an approximation problem by 
introducing a random vector U that is uniformly distributed 
between 0 and 1. Applying the function f to U, we obtain a 
random variable f (U) with expectation 

(0,1)
[ ( )] ( ) ( )dE f U f x x dx

 

(2)

 

where 

 

is the probability density function of U. Since the 
value of 

 

on the region of integration is 1, equation (2) 
becomes 

(0,1)
[ ( )] ( )dE f U f x dx

 

(3)

 

Equations (1) and (3) allow us to represent the integral 

 

as a 
probabilistic expression as follow: 

[ ( )]E f U

 

(4)

 

To estimate , we need a mechanism for drawing points 
U1, U2, ...,Un. Applying function f to each of these n random 
points yields n independent and identically distributed (iid ) 
random variables f (U1), f (U2), ..., f (Un), each with expectation 

 

and standard deviation . Averaging the results produces 
the Monte Carlo estimator 

1

1
( )

n

i
i

f U
n

 

(5)

 

which is an unbiased estimator for 

 

with the error - 

 

approximately normally distributed with mean 0 and standard 

deviation n .  

The form of the standard error n

 

is an important 

property of Monte Carlo methods. First, it tells us that if we 
increase the number of our samples by a factor of four, we will 
half the standard error. Second, standard error does not depend 
on the dimensionality of the integral. A Monte Carlo estimator 
based on n draws from the domain [0,1]d still have the form 

n

 

for all dimensions d. Most techniques of numerical 

integration such as the trapezoidal rule degrade in convergence 
rate with increasing dimensions.  

We consider a Monte Carlo method to be useful in the 
domain of data stream analysis in which the number of data is 
overwhelming and the exact data distribution is unknown. The 
focus of our study is to generate samples from a stream data 

which is a prior step to data modeling and analysis. Once the 
samples have been successfully drawn, the characteristics of 
stream can be estimated. We concentrate on the sampling 
problem because it can provide a satisfactory estimation which 
will be proven through experimentations on cluster and 
classification analyses. 

III. SAMPLING METHOD AND DENSITY ESTIMATION 

Basically the Monte Carlo method employs any technique 
of statistical sampling to approximate solutions to quantitative 
problems. With Monte Carlo method, a large system can be 
sampled in a number of random configurations, and that data 
can be used to describe the system as a whole. The efficiency 
of the method depends largely on the ability to draw samples 
effectively. For a particular domain of stream data, we 
consider the rejection sampling method. Rejection sampling, 
or acceptance-rejection sampling, is a sampling method first 
introduce by Von Neumann [16]. This method is used in cases 
where a target distribution, f(x), is too complicate for us to 
sample from it directly. 

Suppose we have a simpler distribution, g(x), which we can 
evaluate and generate samples from, then the difficult 
sampling problem can be avoided by sampling from g(x) 
instead. By generating a uniform random variable u from the 
interval [0,1], we accept x if the condition   u 

 

f(x) / Cg(x) 
holds; otherwise reject the value of x and repeat the sampling 
step. Posing the restriction Cg(x) 

 

f(x) for some C >1, we say 
that Cg envelopes f. The validation of this method is the 
envelope principle. When simulating the point (x, v) where v = 
u*Cg(x), we produce a uniform simulation over the subgraph 
of Cg(x). Accepting only points such that  u 

 

f(x) / Cg(x)  
then produces points (x, v) uniformly distributed over the 
subgraph of  f(x) and thus, marginally, a simulation from f(x). 

Rejection sampling will work best if g is a good 
approximation to f. However, in a high-dimensional problem 
the value of C needs to be chosen very large to ensure the 
requirement Cg(x) > f(x), for all x. The result is an enormous 
rejection rate. 

The difficulty of applying rejection sampling method 
directly to the problem of data stream analysis is that we do 
not know beforehand where the modes of f are located or how 
high they are. In other words, we do not know the exact 
characteristics of the target density. We thus propose to apply 
the EM (Expectation-Maximization) technique [6] to 
approximate the density f(x). 

We consider multi-dimensional stream data as mixtures of 
Gaussian, or normal, probability density functions (pdf). 
Gaussian mixtures [8], [12] are combinations of Gaussian 
distributions written as  

1

( ) ( | )
K

i i
i

g x p f x

 

(6)

 

A random variable x denotes independent observation in K 
mixture components. The pi s are the mixing proportions,        
0 < pi <1 for all i = 1, ..., K, and p1 + ... + pK = 1. The f(x| i) 
denotes the density of a d-dimensional Gaussian distribution 
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with mean vector 

 
and covariance matrix , that is 

 
= ( , ), 

and the Gaussian pdf is given by [4], [15] 

1
( , )

2

1 1
( ) exp{ ( ) ( )}

2(2 ) det( )

T
d

x x xg

 
(7)

 
By varying the number of Gaussians K, the mixing 

proportions pi, and the parameter i of each Gaussian density 
function, Gaussian mixtures can be used to describe any 
complex pdfs (Fig. 1). 

Fig. 1 one dimensional Gaussian mixture densities for K = 3 
(first row) and K = 30 (second row). The left column shows 
the histogram of Gaussian density, the right column gives the 
corresponding Gaussian mixture pdf   

In stream data a mixture density pi f(x| i) has been observed 
with unknown parameters i and pi. To find these parameters 
to optimally fit a mixture model for a given set of data, the 
EM algorithm [6], [12], [15] can be used. The EM algorithm 
is a broadly applicable approach to the iterative computation 
of maximum likelihood estimates. For a set of iid samples X = 

{ x1, ..., xN }drawn from a data generation model 
( , )

( )ixf , 

thus the resulting density for the samples is 

( , )
1

( ) ( | )
N

i
i

x L xf . (8)

 

The likelihood function ( | )L x is the likelihood of the 

parameters given the data. In the maximum likelihood 
problem, the goal is to find 

 

that maximizes L, that is 
arg max ( | ).L X

 

In the Gaussian case, the computation of 

the exponential can be avoided by maximizing log ( ( | )L x ) 

instead of ( | )L x . 

The EM algorithm is an approach to find the maximum of 
likelihood functions in incomplete data problems. Let X be 
observed data, Z be unobserved data, and Y = X Z be full 
data set. The probability distribution of Z depends on X and 
the unknown parameter . Given an initial parameter (0), The 
EM algorithm produces a sequence { (0), (1), (2), ... } that 
converges to a stationary point of the likelihood function. 

IV. EMR SAMPLING 

In our particular case of data stream analysis, we assume 
that the observed data have a normal distribution. Given a 
specific number of models, the EM algorithm is applied to 
estimate the mean of each model. These mean values have 
been scaled up to produce an upper bound for the underlying 
partially observed target density. The idea of the proposed 
method is illustrated in Fig. 2. The target function is 
represented as a one-dimensional 3-Gaussian mixtures (the 
three solid lines at the bottom of Fig. 2) from which we want 
to draw samples. The density E(x) is estimated with the upper 
bound requirement that E(x) > f (x) for all x. ( )E x

 

is the 

approximation (shown as a thick dash line in Fig. 2) of the 
unknown target density. A broad distance of E and E

 

(e.g., 
at x = 1) represents a rejecting area, whereas a narrow distance 
(e.g., at x = 6.5) is an acceptance one. 

It should be noted that EM requires a pre-specified number 
of K components to be incorporated into the mixture models. 
According to our proposed method, a suitable number should 
be selected by a user. To cope with multi-dimensional 
problem, we propose to use a statistical method 

 

principal 
component analysis (PCA) 

 

to reduce the complicated 
problem to a simpler two-dimensional problem. That is, we 
take into account only the first and second major components 
of the data set. The two-dimensional data are used to train the 
EM algorithm to estimate parameters 

 

and 

 

of the Gaussian 
mixture models. The estimated Gaussian pdf is a distribution 
E (as shown in Fig. 2). To sample from the estimated density 
we scale up this distribution to obtain an approximate E , 
which is a simpler distribution that we can evaluate and 
generate samples from. The outline of our EMR sampling 
algorithm is illustrated in Fig. 3. The subroutine 
Density_Estimator to approximate the density function has 
been shown in Fig. 4. 

 

Fig. 2 EM-based rejection (EMR) sampling  

From the estimated density E and the rough approximate E, 
we perform rejection sampling with the decision criteria 

{ ( ) /( ( ))}E x d E x u , when u is a uniform variable 

distributed between 0 and 1, and d is a dimensionality of the 
data. The input from stream data has been taken one by one. 
The data item that satisfies the criteria will be included in the 
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sample until the specified sample size is completely filled up. 
Then the sampled data set is a representative of the whole 
stream. Any analysis methods can now be performed on this 
set. 

Input: - a d-dimensional data set D with N points  
     - an integer K to specify the number of models, and  
      - a sample size SS 

Output: - a sample set S drawn from the mixture models    
// Data preprocessing steps  // 

1.  If d > 0 then  Apply PCA to obtain 1st and 2nd components 
2.                       Transform D to a two-dimensional data set X 

// Density estimation with EM and getting a rough  pdf ( )E X // 

3.  Set max_iteration = max{50, d*K}             
4.  (E(X), ( )E X ) = Density_Estimator (X, K, max_iteration) 

5.  Set count = 0           
6.  While count < SS               // Sampling steps // 
7.        Sample x from E(X) 
8.        Generate u from U(0,1) 

9.        If  ( ) /( ( ))u E x d E x

  

              then  Accept x, add it to S, and increment count 
10.  Return S 

Fig. 3  EMR sampling algorithm 

 

Density_Estimator (X, K, max_iteration) 

1. Initialize parameter 

 

= ( , ) for each of K Gaussian models by 
running K-means 

2. Initialize the prior probabilities ( )kP m of each model m to 

1/K, k = 1,..., K 
3. Repeat 
4.     Compute the probability  

( )( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( | ) ( | , )
( | , )

( | ) ( | ,

ii i i
i i k n k k

k n i i i i
j n j jj

P m p x
P m x

P m p x

 

5.      Update means k , variances k , and priors P  

                                 
( ) ( )

( 1) 1
( ) ( )

1

( | , )

( | , )

N i i
n k ni n

k N i i
k nn

x P m x

P m x

 

  
( ) ( 1) ( 1)( )

( 1) 1
( ) ( )

1

( | , ) ( ) ( )

( | , )

N i i ii T
n n nk k ki n

k N i i
nkn

P m x x x

P m x

 

                 ( 1) ( )( 1) ( )

1

1
( | ) ( | , )

N
i ii i

nk k
n

P m P m x
N

 

6. Until the max_iteration has been reached or the joint 
likelihood of all data with respect to all the models 
is greater than the lower boundary criterion CL( ) 

          
1 1

( ) ( ) ( | , ) log ( | )
K N

k n n
k n

L CL P m x p x

 

7. Return ( , )i k k

 

for k = 1, ..., K , and a rough 

( , )r r
i k k from r iterations, r < 10 

Fig. 4  Density-Estimator algorithm 

V.   EXPERIMENTATIONS 

A.  Evaluation of Density Estimator  

The objective of our initial experiments is to empirically 
evaluate the closeness of the estimated density to the real one. 
The closeness is determined by comparing the Euclidean 
distance of the estimated mean vector to the original mean 

vector , and comparing the estimated covariance matrix  to 
the original covariance matrix . We use a synthetic data 
generator to produce two-dimensional Gaussian mixtures. The 
number of mixture models, number of points in each model, 
original mean vector and covariance matrix are input 
parameters. 

We vary the number of models from 2 to 20 with 50 to 
1,000 data points in each model. To properly initialize the 
component means for the -parameter learning, we find the 
approximate mean points by running max{50, d*K} iterations 
of k-means algorithm [17]. Component elements and main 
diagonal covariance matrix elements are also initialized 
accordingly, and off-diagonal matrix elements are constrained 
to zero. Some of our experimental results on the accuracy of 
our density estimator compared with the simple uniform 
sampling are illustrated in Table 1. The EMR sampling results 
are compared against the uniform sampling which always 
assumes a single Gaussian model. The efficiency of the 
sampling methods is evaluated on the basis of the closeness of 
the estimated ( , )i i i to the original means and 

covariance matrices of the generative models. The -
differences and -differences are averaged from K models. 
The experimental results confirm the applicability of the EMR 
approach toward the problem of -parameter approximation. 
The estimated means and variances are very close to the 
original parameter values.  

TABLE I 
EXPERIMENTAL RESULTS OF EMR SAMPLING FROM VARIOUS MIXING OF 

GAUSSIAN MODELS 

EMR Sampling Uniform Sampling Number 
of 
Mixture 
Models  

-
difference  

-
difference  

-
difference 

-
difference 

2  0.000113  0.000901  0.088772  0.144793 

6  0.000425  0.001527  0.090213  0.231109 

8  0.000961  0.001599  0.098055  0.271645 

12  0.000987  0.001938  0.200137  0.430098 

14  0.001017  0.001991  0.299873  0.456131 

16  0.001025  0.002007  0.300159  0.513772 

18  0.001328  0.002031  0.330011  0.720001 

20  0.001414  0.002508  0.460101  0.935644 
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B. Cluster and Classification Analyses 

To verify the utility of the proposed method on the real-
world data we run the k-means clustering algorithm [17] on 
various sampled data from the UCI repository [http://www.ics. 
uci.edu/~mlearn/ MLRepository.html]. We test our algorithm 
on four data sets: Wisconsin diagnostic breast cancer (466 
data points, 2 classes), diabetes (512 data points, 2 classes), 
DNA (2000 data points, 3 classes), and satellite image (4435 
data points, 6 classes). In each data set, we assume that the 
class labels are correct clusters to be found by the k-means 
algorithm. By assuming prior knowledge about known 
clusters, we can evaluate the error rate of the cluster learning. 

On evaluation the efficiency of the Monte Carlo approach 
we simulate a data stream by generating several samples for 
each data set. In our experiments we observe the performance 
of cluster learning on increasing samples varied from 1%, 5%, 
10%, 15%, ... ,50%, and the complete data set. The 
experimental results are shown in Fig. 5. The clustering 
results reveal the efficiency of the proposed method that only 
around 10-25% sampling size is sufficient for the accurate 
learning of data clusters.  

The classification task has been performed on the same 
experimental setting with the C4.5 algorithm [17]. the results 
are shown in Fig. 6.   

VI. CONCLUSION 

In this paper we propose a technique of Monte Carlo 
estimation to analyze major characteristics of data stream. At 
the sampling phase of the Monte Carlo method we propose the 
EMR sampling algorithm to efficiently draw representative 
samples from data containing mixture models. We propose to 
apply the expectation-maximization technique to estimate the 
means and variances of the mixture models. The algorithm 
Density_Estimator produces two density functions, E and .E

 

The distance of E and E

 

at each sampling point is a decision 
criteria for either sample acceptance or rejection. A narrow 
distance among the two estimated densities tends to the 
acceptance case if the distance ratio is greater than the 
generated uniform random variable from the interval [0, 1]. 

The experimental results verify the utility of the proposed 
Density_Estimator algorithm and the EMR sampling method. 
The clustering and classification experimentations on real-
world data also confirm the efficiency of our method. We plan 
to further our study on skewed data in which the distributions 
are not uniformly distributed. 
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Fig. 5 Clustering results on four data sets    
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Fig. 6 Classification results on four data sets  
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